

DOI: 10.11949/j.issn.0438-1157.20180186

Ru和 Cu协同催化湿式氧化处理氨氮废水

耿莉莉¹,杨凯旭²,张诺伟²,陈秉辉^{1,2}

(1昌吉学院化学与应用化学系,新疆 昌吉 831100; 2厦门大学化学化工学院,醇醚酯化工清洁生产国家工程实验室, 福建 厦门 361005)

摘要:采用化学还原法制备了 RuCu/TiO₂ 双金属催化剂,并探究了 Ru 和 Cu 的协同作用对催化湿式氧化 (CWAO) 无害化处理氨氮废水催化性能的影响。研究结果表明,Cu 的添加可有效改善 Ru/TiO₂ 催化剂的 N₂选择性,而 Ru 的存在可有效提高 Cu/TiO₂ 催化剂的催化活性。反应条件为 0.5 MPa、150℃、[NH₃]₀=1000 mg·L⁻¹、pH=12、模 拟废水处理量为 33 L·(kg cat)⁻¹·h⁻¹时,1Ru2Cu/TiO₂ 能使废水的氨氮转化率和 N₂选择性分别高达 87.7%和 85.9%。表征结果表明:Ru 和 Cu 的协同在催化氧化氨氮废水过程中起了关键作用,主要体现在:Ru 和 Cu 的强相互作用 导致 1Ru2Cu/TiO₂ 催化剂具有良好的抗流失性能,进而使得催化剂具有良好的稳定性;Ru 和 Cu 的电子转移使得 1Ru2Cu/TiO₂ 具有适中的亲氧性能,有效提高了催化剂的催化活性。

关键词: RuCu/TiO₂; 催化湿式氧化; 氨氮废水; 协同作用; 纳米材料; 催化(作用); 降解
 中图分类号: TQ 032
 文献标志码: A
 文章编号: 0438-1157 (2018) 09-3869-10

Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater

GENG Lili¹, YANG Kaixu², ZHANG Nuowei², CHEN Binghui^{1,2}

(¹Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, Xinjiang, China; ²College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005, Fujian, China)

Abstract: RuCu/TiO₂ bimetallic catalysts which were prepared *via* chemical reduction methods and the synergetic effect between Ru and Cu in the detoxification of ammonia-wastewater to nitrogen *via* catalytic wet air oxidation (CWAO) were investigated. The results showed that the addition of Cu in Ru/TiO₂ can effectively improve the selectivity of N₂, while the presence of Ru in Cu/TiO₂ can greatly enhance the catalytic activity of the catalyst. The catalyst (1Ru2Cu/TiO₂) with 1% and 2% loading of Ru and Cu has the best catalytic performance among the prepared catalysts. With the reaction conditions of 0.5 MPa, 150°C, [NH₃]₀ = 1000 mg·L⁻¹, pH = 12 and the application to the simulated wastewater was about 33 L·(kg cat)⁻¹·h⁻¹, 1Ru2Cu/TiO₂ achieved 87.7% ammonia conversion and 85.9% N₂ selectivity. The characterization results demonstrated that the synergetic effect of Ru and Cu played a key role in the catalytic of the ammonia to nitrogen, mainly reflects in the following: the strong interaction between Ru and Cu results in good anti-leaching of 1Ru2Cu/TiO₂ has a moderate oxygen affinity, which

²⁰¹⁸⁻⁰²⁻⁰⁹ 收到初稿, 2018-06-18 收到修改稿。

联系人:张诺伟,陈秉辉。**第一作者:**耿莉莉(1986—),女,博士 研究生,讲师。

基金项目:新疆维吾尔自治区高校科研计划项目(XJEDU2016S083); 福建省自然科学基金项目(2015J05031)。

Received date: 2018-02-09

Corresponding author: ZHANG Nuowei, zhnw@xmu.edu.cn; CHEN Binghui, chenbh@xmu.edu.cn

Foundation item: supported by the Educational Commission of Xinjiang (XJEDU2016S083) and the Natural Science Foundation of Fujian Province (2015J05031).

has effectively enhanced the catalytic activity of the catalyst.

Key words: RuCu/TiO₂; catalytic wet air oxidation; ammonia-wastewater; synergetic effects; nanomaterials; catalysis; degradation

引言

随着我国工业化、城市化进程的不断加快,氨 氮废水的排放量日益增加,水体中氨氮污染日益严 重。氨氮的存在不仅增加污水处理难度和成本,且 对人类和水生生物有毒害作用。此外,氨氮的存在 还会大量消耗水中溶解的氧气,导致水体富营养化 和藻类大量繁殖,破坏水生生物生活环境和水体生 态平衡。氨氮减排已成为我国水体污染继 COD 之 后的第二项约束性控制指标^[1],水体中氨氮的治理 刻不容缓。

催化湿式氧化(CWAO)技术是 20 世纪 80 年 代发展起来的一种废水治理的新技术^[2-8]。该法通过 催化剂的催化作用,在一定温度和压力下,仅利用 氧气或空气就可将污水中的有机和氨氮污染物分别 氧化为 CO₂ 和 N₂等无害物质。CWAO 技术在氨氮 废水处理过程中能一次性地将其全部转化为对人类 和环境完全无害的氮气,与其他物化处理方法(如 吹脱法、离子交换法、吸附法、折点氯化法、化学 沉淀法等)相比,无须考虑氨氮二次处理问题,且 不会因加入化学药剂而引入二次污染;与广泛应用 的生物处理法相比,催化湿式氧化技术更为节能和 高效,且能有效处理高、中、低不同浓度的氨氮废 水,尤其适合低浓度氨氮废水以及生物法难以处理 的有毒氨氮废水,因而在经济上和技术上更具有竞 争优势。

催化湿式氧化处理氨氮废水技术的核心在于 催化剂,优秀的催化剂必须同时具有足够高的氨氮 转化活性和优良的氮气选择性。一般而言,负载型 贵金属(Ru、Rh、Pd、Pt等)催化剂为其首选。Qin 等^[9]以 Al₂O₃ 为载体,详细研究了不同金属种类对 氨氮催化湿式氧化反应活性的影响,结果表明,贵 金属比非贵金属具有更优的催化性能。同时还发现, 与 Pt/Al₂O₃ 催化剂相比,Pd/Al₂O₃ 和 Ru/Al₂O₃ 具有 更好且相近的催化性能。Barbier 等^[10]则发现 Ru/CeO₂ 催化剂比 Pt/CeO₂ 和 Pd/CeO₂ 具有更高的 催化活性,而 Ru 和 Pd 的协同使得双金属催化剂具 有更高的 N₂ 选择性。Hideki 等^[11]制备了 Pd/AC 催 化剂,该催化剂具有良好的催化转化性能,在相对 温和的条件(180℃)下能将废水中的氨氮 100%去 除,即使在 150℃下也能去除 80%以上的氨氮。负 载型 Cu 催化剂也具有较好的氨氮去除性能,但是, 在使用过程中存在活性组分的溶出现象,造成催化 剂活性组分的流失、失活,进而会造成二次污染^[12]。 NiAl₂O₄ 催化剂在氨氮催化反应中有很好的稳定性 与选择性,但其催化活性很低,氨氮的去除率仅为 20%^[13]。

复合氧化物催化剂也是科研工作者研究较多的一类氨氮废水催化处理的催化剂。Imamura等^[14]考察了多种氧化物的氨氮去除性能,研究结果表明Co/Ce和Mn/Ce复合氧化物催化剂具有良好的氨氮 催化性能、良好的氧化还原性能和较强的氨亲和力, 是该类催化剂具有良好性能的主要原因。Inoue等^[15] 发现 CoO表现出了比 Cr₂O₃、MnO₂、NiO、V₂O₅、 ZnO、Co₂O₃和 Fe₂O₃更好的氨氮处理能力。Hung 等^[16]利用共沉淀法制备了堇青石负载的 Cu-La-Ce 复合型催化剂,在滴流床反应器中,温度 200℃、 氧气分压 3 MPa、液体空速 5.4 h⁻¹条件下,废水中 氨氮去除率高达 91%。

亲氧性能是影响催化剂催化湿式氧化处理氨 氮废水催化性能的重要因素之一[17-19]。具有合适亲 氧能力的 Ru 和 Pd 有优良的氨氮催化湿式氧化性能 (氨氮转化率>99%, N2选择性>95%), 而亲氧能力 低的 Pt 和亲氧能力高的 Mo 其氮氧化合物的选择性 分别为 46%和 24%^[9]。本课题组^[20-21]的前期研究结 果表明,贵金属和非贵金属(Ru和Cu、Pd和Ni) 的结合能调变碳载金属催化剂的亲氧性能,进而有 效提高催化剂的催化性能。TiO2载体是催化湿式氧 化处理氨氮废水体系常用的载体,目前尚未见到有 以氧化物为载体,利用贵金属和非贵金属的协同作 用来提高氨氮催化湿式氧化催化性能的报道。故本 文以 TiO₂ 为载体, 以 Ru 和 Cu 为活性组分, 系统 研究了 Ru 和 Cu 的协同作用对氨氮催化湿式氧化 的效果,对催化剂做了物化性质表征,并讨论了其 构效关系。

1 实验材料和方法

1.1 材料

氯化铵、氯化钌、氯化铜、硝酸钠、亚硝酸钠、

碘化汞、碘化钾、磷酸氢二氨、氢氧化钠、氨水(25%, 质量分数)、水合肼(85%,质量分数)、盐酸、磷酸 和异丙醇均为分析纯,乙腈、甲醇为色谱纯,以上 试剂均购于国药集团化学试剂有限公司;TiO2载体

(P₂₅) 购于 Evonik Degussa 公司。

1.2 催化剂的制备

双金属催化剂的制备:称取 1.0 g TiO₂ 载体于 锥形瓶中,加入所需量的水和 CuCl₂·2H₂O 前驱盐, 并滴加氨水将混合液的 pH 调至 10 (氨水过量),连 续搅拌 3h 后加入所需量的水合肼,继续搅拌 2h 后 加入所需量的 RuCl₃·3H₂O 前驱盐,继续搅拌 12h, 过滤、洗涤并干燥,最后于 H₂气氛中、250℃焙烧 4h 以增强双组分金属间的相互作用,制备得到的催 化剂记作 $xRu-yCu/TiO_2$,其中, $x \pi y 分别为 Ru 和$ Cu 的质量分数。

单金属催化剂制备过程与双金属催化剂类似, 但只加入一种金属前驱盐。

制备完成后尽量避免活性组分的氧化,否则易 减弱金属活性组分间的相互作用,降低催化剂的活 性和选择性。

1.3 催化剂的评价方法

本实验采用间歇反应装置进行模拟氨氮废水 的催化湿式氧化实验。反应器为不锈钢高压反应釜, 装置如图1所示。

1—oxygen cylinder; 2—pressure reducing valve; 3—reactor;4—temperature control device; 5—heating jacket; 6—stirring rake

将 0.1 g 催化剂和 10 ml 浓度为 1000 mg·L⁻¹ 的 氨氮模拟废水装入高压釜中,溶液的 pH用 2 mol·L⁻¹ 的 NaOH 调节。向反应釜内充入 O₂进行气体置换, 然后将 O₂ 充到设定的压力,以 830 r·min⁻¹ 的转速 搅拌。反应温度为 150℃,到达设定的反应温度后 反应 3 h。反应结束后,将反应釜放入冷水中冷却。 氨氮浓度根据纳氏试剂分光光度法分析,采用 紫外分光光度计,波长为 405 nm。液相中亚硝酸盐 和硝酸盐浓度通过高效液相色谱分析,使用 C₁₈ 色 谱柱(5 μm, 12 nm, 4.6 mm×250 mm),柱温 35℃; 紫外检测器,检测波长 210 nm;流动相为 17.5 mmol·L⁻¹ NaH₂PO₄-2 mmol·L⁻¹ H₃PO₄ 缓 冲 液 (pH=3.5)+乙腈(90:10,体积比),流速1 ml·min⁻¹。 气相中的产物通过装备有 Porapack T 和 Molsieve 5A 填充柱的 GC-9160 气相色谱仪进行分析。

检测结果显示,液相中的含氮物质包括 NH_4^+/NH_3 、 NO_2^- 、 NO_3^- ;气相中的含氮产物只有 N_2 , 未检测到 NO、 N_2O 等物质。

用氨氮的转化率和氮气选择性表示催化湿式 氧化氨氮工业废水的催化剂的催化活性。

氨氮转化率计算公式为

$$X_{\rm NH_3} = \left(\frac{c_{\rm NH_3}^0 - c_{\rm NH_3}}{c_{\rm NH_3}^0}\right) \times 100\%$$
(1)

氮气选择性计算公式为

$$S_{N_2} = \left(1 - \frac{c_{NO_3^-} + c_{NO_2^-}}{c_{NH_3}^0 - c_{NH_3}}\right) \times 100\%$$
(2)

式中, c^0 为溶质的初始浓度, $mg \cdot L^{-1}$, c为实时浓度, $mg \cdot L^{-1}$; 下角标代表各组分或各离子。

1.4 催化剂的表征

催化剂活性组分的流失量可通过电感耦合等 离子体发射光谱(ICP)进行分析。取反应后的溶液经 过滤膜过滤后稀释至约 10 ml 待测。

催化剂的 N₂ 吸附-脱附曲线(BET)测定在 Micrometrics Tristar-3020 型物理吸附仪上进行,可 测得催化剂的比表面积和孔容孔径等信息。根据 Brunauer-Emmett-Teller (BET) 方法计算出比表面 积,根据 BJH 法计算出催化剂的平均孔径。催化剂 样品在 200℃下抽真空预处理 2h,将催化剂表面的 水和吸附的杂质去除。预处理后,催化剂在液氮温 度(-196℃)下进行低温 N₂吸附-脱附测试。

样品的物相结构 X 射线衍射(XRD)分析在 Rigaku X 射线衍射仪上进行,CuK_a 靶(λ =0.15406 nm)辐射,工作电压 40 kV,工作电流 30 mA,扫描 速率 10(°)·min⁻¹,扫描范围 10°~90°。

透射电子显微镜(TEM)是一种用于观察催化 剂纳米粒子形貌、分散情况等微观结构的表征技术, 催化剂样品的 TEM 表征采用 TECNAI-F30 场发射 高分辨透射电子显微镜(美国 FEI 公司)进行观察, 加速电压为 300 kV,分辨率为 0.1 nm。取适量待 测样品分散于乙醇中,浓度为 1 mg·min⁻¹,对其进 行超声 20 min。超声后,通过滴管取上层清液滴至 铜网上,再通过红外烤灯烘烤,最后将样品放置密 封样品盒中待测。

催化剂的氧化还原能力可以通过 H₂-TPR 测 得,同时还可以用来探究双金属氧化物的金属相 互协同作用。样品在测试前进行压片。催化剂首 先在 200℃的氩气气氛下处理 2h,除去表面吸附 物质,如水、二氧化碳等。预处理后,样品降至室 温,再将处理气体改为 5% H₂/Ar 混合气,同时 程序升温至 850℃,升温梯度为 10℃·min⁻¹。气 相色谱中的热导池检测器(TCD)可以用来检测分 析氢气的消耗。

X 射线光电子能谱(XPS)可以分析材料表面的组成、电子结构和各元素的价态分布等信息。催化剂的 XPS 表征测试是在 PHI Quantum 2000 X 射线扫描微探针电子能谱仪上进行的,催化剂研磨 至 48 μ m 以下后进行压片,以 AlK_a为 X 射线源,其分析条件为:高压 14.0 kV,功率 250 W,所有测得元素均以碳 C ls 为参考进行校正(284.6 eV),元素价态含量通过 XPS Peak 进行拟合,每种价态的峰面积比为其相对含量。

2 实验结果与讨论

2.1 Ru和 Cu组成对催化性能的影响

首先研究了 Ru 和 Cu 的相对含量对催化剂催 化湿式氧化处理氨氮废水催化性能的影响,结果如 图 2 所示。从图 2 中可以看出,对于单金属催化剂 而言,高的催化活性和高的 N₂ 选择性不可兼得。 3Ru/TiO2催化剂具有最高的催化氧化活性,其氨氮 转化率高达 98.2%, N2 选择性仅为 60.4%。3Cu/TiO2 催化剂具有最高的 N2 选择性 (98.1%), 但其催化活 性很低, 氨氮转化率仅为 29.8%。Ru 和 Cu 的结合 可有效调变催化剂的催化性能,但调变效果取决于 催化剂中 Ru 和 Cu 的相对含量。当 Cu 含量增加至 1%时, N2选择性从 60.4%增加至 73.1%, 尽管氨氮 的转化率有了一定程度的降低,但仍然高达91.0%。 随着 Cu 含量的进一步增加, N2 的选择性直线上升。 同时还可以看到,尽管 Ru 的含量不断降低,而高 的氨氮转化率仅有略微的降低。1Ru2Cu/TiO2 催化 剂具有最优的催化性能,其氨氮转化率和 N2选择性 分别为 87.7%和 85.9%。可见, Ru 和 Cu 的协同使 得双金属催化剂即使在较低贵金属用量的条件下, 也能同时具有高的催化活性和 N2 选择性。

2.2 Cu的添加量对催化性能的影响

图 3 是 Cu 的添加量对 1Ru/TiO2 催化剂氨氮转

化率和 N₂选择性的影响。1Ru/TiO₂ 催化剂的催化性 能较差, 氨氮转化率和 N₂选择性分别仅为 76.3%和 61.9%。Cu 的添加可有效提高氨氮转化率和 N₂选择 性。当 Cu 的添加量为 2%时, 氨氮转化率和 N₂选择 性增加至 87.7%和 85.9%。随着 Cu 添加量的进一 步增加至 4%, N₂选择性由 85.9%增加至 87.9%, 而高的氨氮转化率基本保持不变。但当 Cu 的添加 量高于 4%, 继续增加 Cu 添加量则会降低催化剂 的催化活性, 氨氮转化率由 88.5%降低至 80.9%, 尽管 N₂选择性上升至 93.9%。Cu 的最优添加量为

图 2 Ru 和 Cu 相对含量对催化剂催化湿式氧化氨氮反应 活性的影响(150℃, pH = 12,氧气压力 0.5 MPa, 反应时间 3 h)

Fig.2 Effect of Ru and Cu proportions on catalytic performance of CWAO of ammonia(150°C, pH = 12, oxygen pressure 0.5 MPa, reaction time 3 h)

100 100 90 90 oc selectivity /% 80 conversion /% conversion 70 selectivity 60 60 50 50 0 6 Cu loading/%

图 3 Cu 的添加量对 1Ru/TiO2催化剂催化湿式氧化氨氮 反应活性的影响(150℃, pH = 12, 氧气压力 0.5 MPa, 反应 时间 3 h)

2%~4%。

2.3 压力对 1Ru2Cu/TiO2 催化剂催化性能的影响

反应压力是影响催化湿式氧化处理氨氮废水 催化性能的重要因素之一,在 0.3~1.0 MPa 的范围 内考察了 O₂ 压力对 1Ru2Cu/TiO₂ 催化剂催化性能 的影响,结果如图 4 所示。与文献报道的结果类 似,随着 O₂ 压力的升高,催化剂氨氮的转化率逐 渐升高而 N₂选择性则逐渐降低。当 O₂ 压力为 0.3 MPa 时,氨氮的转化率为 83.7%, N₂ 的选择性为 90.9%。当 O₂ 压力增加至 1.0 MPa,氨氮的转化率 增加至 92.5%,但 N₂ 的选择性降低为 78.0%。一 般而言,随着 O₂ 压力的升高,水相中溶解的 O₂ 随之增加,进而使得催化剂表面可利用的氧物种 增多,因而,随着反应压力的升高,氨氮的转化率 逐渐升高。但过多的氧物种则导致氨氮的深度氧 化,因此,随着反应压力的升高,N₂的选择性逐 渐降低。

Fig.4 Effect of reaction pressure on catalytic performance of 1Ru2Cu/TiO₂ for CWAO of ammonia(150°C, pH = 12, reaction time 3 h)

2.4 Ru和 Cu的协同作用对催化剂稳定性的影响

催化剂的稳定性是影响催化剂实际工业应用 的重要因素之一,为了探究 Ru 和 Cu 的协同作用对 催化剂稳定性的影响,对 1Ru2Cu/TiO₂ 催化剂进行 了连续 5 次的催化性能测试,结果如图 5 所示。作 为对比,图 5 也给出 1Ru/TiO₂ 催化剂的稳定性测试 结果。1Ru/TiO₂ 催化剂的稳定性较差,随着反应的 进行,氨氮转化率和 N₂选择性都逐渐降低。连续反 应 5 次后,氨氮转化率和 N₂选择性分别由初始的 73.4%和 61.9%降低至了 60.3%和 57.9%。Ru 和 Cu 的协同不仅可有效提高催化剂的活性和选择性,还 可有效改善其稳定性。在连续测试的 5 次反应内, 没有明显的失活现象发生,高的氨氮转化率(>84%) 和 N₂选择性(>83%)基本保持不变。为了探究催 化剂失活的原因,对反应后的溶液进行了 ICP 测定。 结果表明,随着反应次数的增加,1Ru/TiO₂催化剂 的活性组分 Ru 逐渐流失,五次反应中 Ru 的流失率 分别为 1.1%、0.9%、0.8%、1.0%和 0.7%,这表明 Ru 活性组分的流失可能是 1Ru/TiO₂ 催化剂失活的 一个主要原因。1Ru2Cu/TiO₂ 催化剂具有良好的抗 流失性能,在连续的 5 次反应内,均没有检测到 Ru 和 Cu 的流失。可见, Ru 和 Cu 的协同提高了催化 剂的抗流失性能,进而改善了其稳定性。

图 5 1Ru2Cu/TiO2 催化剂催化湿式氧化氨氮稳定性测试 (150℃, pH = 12,氧气压力 0.5 MPa,反应时间 3 h) Fig.5 Stability of 1Ru2Cu/TiO₂ catalyst for CWAO of ammonia(150℃, pH = 12, oxygen pressure 0.5 MPa, reaction time 3 h)

2.5 催化剂的织构组织

对催化剂进行了 BET 表征,以研究其织构组织 (比表面积和孔径分布),结果如表 1 所示。可以看 出,随着 Cu 负载量的增加,催化剂的比表面积逐 渐减小,平均孔径略有增加。1Ru/TiO2催化剂具有 最大的比表面积(47.5 m²·g⁻¹),而 1Ru6Cu/TiO2催 化剂的比表面积最小(37.9 m²·g⁻¹)。可能的原因是 催化剂的活性组分 Ru 和 Cu 堵塞了载体的部分孔 道导致了比表面的降低和孔径的增加。但关联催化 剂的性能可知,催化剂的比表面积不是影响催化活 性的主要因素。

表 1 1RuyCu/TiO2催化剂的比表面积和孔径分布 Table 1 Surface area and average pore size of 1RuyCu/TiO2 catalysts

	•	•
Catalyst	BET surface area/ $(m^2 \cdot g^{-1})$	Average pore diameter/nm
1Ru/TiO ₂	47.5	0.8
1Ru2Cu/TiO ₂	42.8	0.8
1Ru4Cu/TiO ₂	39.4	0.9
1Ru6Cu/TiO ₂	37.9	0.9

2.6 催化剂的物相结构和形貌

图 6 是 1RuyCu/TiO₂ 系列催化剂的 X 射线衍射 (XRD)表征结果。作为比较,图 6 也给出了载体 TiO₂ 的 XRD 结果。如图 6 所示,所有催化剂都表 现出了非常相近的 TiO₂ (金红石和锐钛矿)的 XRD 衍射峰^[22-23],表明 Ru 和 Cu 的加入并没有破坏催化 剂载体的物相结构。对于 1Ru/TiO₂ 催化剂而言,除 了载体的衍射峰,没有任何有关金属 Ru 或 Ru 氧化 物的衍射峰被检测到,表明 1Ru/TiO₂ 催化剂的 Ru 活性组分高度分散或以无定形形态存在^[24]。双金属 催化剂中也没有检测到任何 Ru 物种的衍射峰,表

图 7 1Ru/TiO₂、1Ru2Cu/TiO₂和 1Ru6Cu/TiO₂催化剂的 TEM 图及相应的粒径分布 Fig. 7 TEM images of 1Ru/TiO₂, 1Ru2Cu/TiO₂, 1Ru6Cu/TiO₂ and corresponding particle distribution 明 Cu 的添加没有影响到 Ru 的分散状态。同时还可 以观察到, Cu 的含量即使增加到 6%,也没有检测 到 Cu 物种相关的衍射峰,这表明双金属催化剂的 Ru 和 Cu 活性组分都高度分散或以无定形形态存 在。由图 7 所示的 TEM 图及粒径分析结果可以看 到,1Ru/TiO₂、1Ru2Cu/TiO₂和 1Ru6Cu/TiO₂催化剂 上负载的金属颗粒很小,粒径均在 5 nm 以下,表明 所有催化剂的活性组分均高度分散。活性组分的高 度分散是所有催化剂仅呈现 TiO₂载体 XRD 衍射峰 的主要原因。

2.7 催化剂的亲氧性能

催化剂的亲氧性能是影响其氨氮催化湿式氧 化催化性能的重要因素之一,为了研究催化剂的亲 氧特性与催化性能的关系,对 3Ru/TiO₂、3Cu/TiO₂ 和 1Ru2Cu/TiO₂催化剂做了 H₂-TPR 表征,结果如 图 8 所示。一般而言,随着金属亲氧性能的增强, 金属表面的氧物种浓度增加,但反应活性降低。 3Cu/TiO2的H2-TPR中出现了两个肩峰,这两个峰 对应不同的 Cu 的氧化态。其中 153℃处的峰表示 CuO 被还原为 Cu₂O, 温度为 170℃左右的峰可归属 为Cu2O被还原为Cu⁰的峰[25],这也进一步说明Cu2+ 被还原为 Cu⁰ 的过程中有 Cu₂O 的生成。与 Ru/TiO₂ 和 1Ru2Cu/TiO₂的 H₂-TPR 相比, 3Cu/TiO₂催化剂 具有最高的还原温度和最大的还原峰面积,表明 3Cu/TiO2具有最强的亲氧性能。3Ru/TiO2催化剂上 没有检测到 Ru 氧物种的还原峰[26-30], 表明 Ru 的亲 氧性很弱。催化剂采用化学还原法制备,再加上 Ru 弱的亲氧性,故3Ru/TiO2催化剂上的Ru主要以金 属态存在。与 3Cu/TiO₂相比, 1Ru2Cu/TiO₂的 H₂-TPR 中的这两个峰显著地向低温区移动,同时还原

Fig.8 H2-TPR profiles of 3Cu/TiO2, 1Ru2Cu/TiO2 and 3Ru/TiO2 catalysts

峰的面积也更小,这表明 Cu 的存在可增加催化剂 表面氧物种的浓度,而 Ru 的存在可提高催化剂表 面氧物种的反应活性。由此可见,Ru 和 Cu 的结合 能有效调变催化剂的亲氧性能。

2.8 Ru 和 Cu 的相互作用

图 9 是 3Cu/TiO₂、1Ru2Cu/TiO₂和 3Ru/TiO₂催 化剂准原位的 XPS 表征结果。图 9(a)为 1Ru2Cu/TiO₂ 和 3Ru/TiO₂中 Ru 3d 的 XPS 图,由于 Ru 3d 受到 C 1s 的强结合能峰(285 eV 处)的干扰,导致对 Ru 3d_{3/2}处的结合能进行分析时比较困难,然而在图 9(a)中可以观察到 280.3 和 279.7 eV 处 Ru 的结合能 峰,这是 Ru 3d_{5/2}结合能处的峰。3Ru/TiO₂催化剂 中 Ru 的 3d_{5/2}处结合能为 280.3 eV,意味着部分 Ru 以 Ru^{δ+}的状态存在^[29,31-32],而 1Ru2Cu/TiO₂双金属 催化剂中 Ru 的 3d_{5/2}轨道结合能为 279.7 eV,意味 着 1Ru2Cu/TiO₂中的 Ru 以金属态 Ru⁰的状态存

在^[33-34]。Ru 3d_{5/2}轨道结合能向低结合能的移动表明 在双金属催化剂中,Ru和Cu之间有电子传递,Ru 从 Cu 得到了部分电子。图 9 (b) 进一步证实了 Ru 和 Cu 之间的电子传递。3Cu/TiO2 催化剂中 Cu 2p3/2 轨道结合能为 932.5 eV, Kundakovic 等^[35]指出在 933.0~933.8 eV 处的结合能代表的是 CuO, 低结合 能位 932.2~933.1 eV 代表的是 Cu₂O, 这表明 3Cu/TiO2中存在部分 Cu+ [36-37]。而 1Ru2Cu/TiO2 双 金属催化剂 Cu 2p3/2 轨道结合能为 932.7 eV, Cu 2p 的结合能越高表明 Cu 的氧化态越高^[37-38]。在 1Ru2Cu/TiO2中由于受电子作用的影响,造成了Cu 的价态的变化^[37],同时这也进一步表明了 Cu 将电 子传递给了 Ru。氧化物生成热 $(-\Delta H_f^0)$ 的高低反映 金属亲氧性能的强弱,随着 $-\Delta H_{\rm f}^0$ 的升高,M-O 金 属键增强,金属的亲氧性能增强。Ru 得到电子,增 强 Ru-O 金属键,提高了 Ru 的亲氧性能。Cu 失去 电子, 削弱 Cu-O 金属键, 降低了 Cu 的亲氧性能。 因而,双金属通过 Ru 和 Cu 的电子相互作用,调变 了催化剂的亲氧性能,这与 H₂-TPR 的结果一致。

2.9 双金属协同作用及载体作用的结果探讨

2.9.1 Ru和Cu的相互作用结果探讨 氨氮催化湿 式氧化反应遵循 L-H 机理, O2 先在催化剂表面活 化形成活性氧物种, 接着氨氮在活性氧物种上进行 活化,随后产生的氨氮中间物种再与活性氧物种发 生表面催化氧化反应。优秀的催化剂表面的氧物种 具有适中的活性和浓度,确保氨氮能被有效活化和 反应,同时避免不被深度氧化。H2-TPR结果表明, Ru的亲氧性能弱,弱的亲氧性能导致催化剂表面氧 物种反应活性高,因而,3Ru/TiO2催化剂体现出的 是高的催化活性,但 N2选择性较低。Cu 的亲氧性 能强,其表面氧物种的浓度高,但反应活性低,故 3Cu/TiO2 催化剂表现出的是低的催化活性和高的 N2选择性。对于双金属催化剂而言, Ru和 Cu之间 存在电子传递,Ru因得到电子而亲氧能力增强,Cu 则因失去电子而亲氧能力降低,进而调变了双金属 催化剂的亲氧能力,催化剂表面氧物种适中的活性 和浓度使得 1Ru2Cu/TiO2 催化剂同时具有高的催化 活性和 N2选择性。

2.9.2 C载体和TiO2载体作用的结果探讨 前期的 研究结果表明, Ru和Cu的协同作用也可有效提高 碳载金属催化剂的氨氮催化湿式氧化催化性能,但 对于两个体系而言,协同效果却并不相同^[20]。与 Ru/C和RuCu/C相比,Ru/TiO2和RuCu/TiO2催化 剂在相同条件下具有更高的氨氮转化率,但 N2选择

性却相对较低。因此不同载体对双金属的协同作者 及催化活性具有一定的影响。

碳材料比表面积大,表面具有丰富的含氧基 团,对氨氮有一定的吸附能力。以碳材料为载体, 电子会从载体传递到贵金属,从而增加表面贵金属 的电子密度,进而影响催化剂的催化活性^[39],这可 能是在氨氮反应中 N₂选择性较高的一个原因。正如 在研究中发现,相同反应条件下,3Ru/C 中 N₂的选 择性为 90.7%^[20]远高于本工作中 3Ru/TiO₂ 作用下 的 60.4%。虽然碳载体能够有效地将电子传递给贵 金属,但其难以有效传递氧,故相比于 TiO₂载体催 化剂,3Ru/C 作用下的氨氮转化率为 72.0%,低于 本工作中 3Ru/TiO₂作用下的 98.2%。

与碳载体相比,TiO₂尽管比表面积低,但与贵 金属之间具有"强相互作用"^[40]。这种强相互作用 使催化剂的催化性能发生了改变,进一步影响了催 化剂的催化活性,表现在相同条件下氨氮转化率得 以提高。TiO₂载体表面金属的分散度更高,金属粒 子的粒径更小,这有利于双金属之间的协同作用进 而提高了催化剂的活性,表现在相同条件下氨氮转 化率得以提高。

尽管载体不同,双金属之间的相互作用仍然能 够有效提高催化剂的催化性能。关于载体所引起的 双金属协同作用、催化活性及稳定性差异,其具体 的原因还需进一步深入研究。

3 结 论

本文对比研究了 Cu/TiO2、Ru/TiO2 和 RuCu/TiO2 三类催化剂的催化湿式氧化无害化处理 氨氮废水的催化性能,结果表明:单金属 Ru/TiO2 催 化剂具有高的催化活性,但N2选择性低,而Cu/TiO2 催化剂的氨氮转化率低,但具有优良的 N2选择性。 Ru和Cu的结合则能在保持催化剂较高活性的前提 下,有效提升 N2选择性,并改善催化剂的稳定性。 1Ru2Cu/TiO2 催化剂相比于本文中所研究的其他几 种催化剂具有最优性能,在反应压力为0.5 MPa、反 应温度为150℃、[NH₃]₀=1000 mg·L⁻¹、pH=12、模 拟废水处理量为33 L·(kg cat)⁻¹·h⁻¹的条件下,其氨 氮转化率接近 90%, N2 的选择性大于 85%, 且连续 反应 5 次, 良好的催化活性基本保持不变。表征结 果表明:催化剂适中的亲氧性、Ru和Cu的相互作 用(电子传递)、活性组分高的分散性以及良好的抗 流失能力是 RuCu/TiO2 双金属催化剂具有良好催化 性能的主要原因。

References

- 王泽斌,马云,王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 9: 108-112.
 WANG Z B, MA Y, WANG Q. Advance and trend of biological nitrogen removal technologies in wastewater treatment[J]. Environmental Science and Management, 2011, 9: 108-112.
- [2] LUCK F. Wet air oxidation: past, present and future[J]. Catalysis Today, 1999, 53(1): 81-91.
- [3] LEVEC J, PINTAR A. Catalytic wet-air oxidation processes: a review[J]. Catalysis Today, 2007, 124(3/4): 172-184.
- [4] BHARGAVA S K, TARDIO J, PRASAD J, et al. Wet oxidation and catalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221-1258.
- [5] IMAMURA S. Catalytic and noncatalytic wet oxidation [J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 1743-1753.
- [6] HUNG C M, LOU J C, LIN C H. Removal of ammonia solutions used in catalytic wet oxidation processes[J]. Chemosphere, 2003, 52(6): 989-995.
- [7] WANG Y, SUN W, WEI H, et al. Extended study of ammonia conversion to N₂ using a Ru/0.2TiZrO₄ catalyst via catalytic wet air oxidation[J]. Catal. Sci. Technol., 2016, 6: 6144-6151.
- [8] CAPODAGLIO A G, HLAVINEK P, RABONI M. Physico-chemical technologies for nitrogen removal from wastewaters: a review[J]. Revista Ambiente & Agua, 2015, 10: 481-498.
- [9] QIN J, AIKA K. Catalytic wet air oxidation of ammonia over alumina supported metals[J]. Applied Catalysis B: Environmental, 1998, 16: 261-268.
- [10] BARBIER J, OLIVIERO L, RENARD B, et al. Catalytic wet air oxidation of ammonia over M/CeO₂ catalysts in the treatment of nitrogen-containing pollutants[J]. Catalysis Today, 2002, 75: 29-34.
- [11] HIDEKI T, QIN J, AIKA K. Hydrogen-treated active carbon supported palladium catalysts for wet air oxidation of ammonia [J]. Chemistry Letters, 1999, 28(5): 377-378.
- [12] 付迎春.催化湿式氧化法处理氨氮废水的研究[D].南京:南京工业大学, 2004.
 FU Y C. Study on treatment of ammonia wastewater by catalytic wet air oxidation process[D]. Nanjing: Nanjing University of Technology, 2004
- [13] SUTASINEE K N, INAZU K, KOBAYASHI T, et al. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts[J]. Water Research, 2004, 38: 778-782.
- [14] IMAMURA S, DOI A, ISHIDA S. Wet oxidation of ammonia catalyzed by cerium-based composite oxides[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1): 75-80.
- [15] INOUE K, NAKAYAMA D, WATANABE Y. Oxidation of dissolved ammonia using various metal-oxide catalysts[J]. Kagaku Kogaku Ronbunshu, 1986, 12(2): 222-223.
- [16] HUNG C M. Catalytic wet oxidation of ammonia solution: activity of the Cu-La-Ce/cordierite composite catalyst[J]. Environmental Engineering Science, 2009, 26(2): 351-358.
- [17] UKROPEC R, KUSTER B F M, SCHOUTEN J C, et al. Low temperature oxidation of ammonia to nitrogen in liquid phase[J]. Applied Catalysis B: Environmental, 1999, 23: 45-57.
- [18] NEUROCK M, VAN SANTEN R, BIEMOLT W, et al. Atomic and

molecular oxygen as chemical precursors in the oxidation of ammonia by copper[J]. Journal of the American Chemical Society, 1994, **116**: 6860-6872.

- [19] LOUSTEAU C, BESSON M, DESCORME C. Catalytic wet air oxidation of ammonia over supported noble metals[J]. Catalysis Today, 2015, 241: 80-85.
- [20] FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen[J]. Applied Catalysis B: Environmental, 2016, 184: 216-222.
- [21] 王子丹, Hameed Sohaib, 张诺伟,等. PdNi/C 低温高效催化湿式氧化无害化处理氨氮废水[J]. 厦门大学学报(自然科学版), 2018, 57(1): 32-37.
 WANG Z D, HAMEED S, ZHANG N W, *et al.* Efficient degrading of

ammonia by catalytic wet air oxidation over PdNi/C catalyst under mild condition[J]. Journal of Xiamen University (Natural Science), 2018, **57**(1): 32-37.

- [22] CRAVANZOLA S, CESANO F, GAZIANO F, et al. Sulfur-doped TiO₂: structure and surface properties[J]. Catalysts, 2017, 7: 214-225.
- [23] TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO₂-supported gold[J]. ACS Catal., 2016, 6: 1870-1879.
- [24] SALAZAR J B, FALCONE D D, PHAM H N, et al. Selective production of 1, 2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO₂[J]. Applied Catalysis A: General, 2014, 482: 137-144.
- [25] REQUIES J, GU⁻EMEZ M B, IRIONDO A, et al. Biobutanol dehydrogenation to butyraldehyde over Cu, Ru and Ru-Cu supported catalysts. Noble metal addition and different support effects[J]. Catal. Lett., 2012, 142: 50-59.
- [26] BALARAJU M, REKHA V, DEVI B, et al. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol[J]. Applied Catalysis A: General, 2010, 384(1/2): 107-114.
- [27] HAMZAH N, NORDINC N M, NADZRI A H A, et al. Enhanced activity of Ru/TiO₂ catalyst using bisupport, bentonite-TiO₂ for hydrogenolysis of glycerol in aqueous media[J]. Applied Catalysis A: General, 2012, 419/420: 133-141.
- [28] TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO₂ catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232: 16-21.
- [29] LU M H, DU H, WEI B, et al. Hydrodeoxygenation of guaiacol on Ru catalysts: Influence of TiO₂-ZrO₂ composite oxide supports[J]. Ind. Eng. Chem. Res., 2017, 56: 12070-12079.
- [30] OMOTOSO T, BOONYASUWAT S, CROSSLEY S P. Understanding the role of TiO₂ crystal structure on the enhanced activity and stability of Ru/TiO₂ catalysts for the conversion of lignin-derived oxygenates[J]. Green Chem., 2014, 16: 645-652.
- [31] FTOUNI J, MURILLO A M, GORYACHEV A E, *et al.* ZrO₂ is preferred over TiO₂ as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone[J]. ACS Catal., 2016, 6: 5462-5472.
- [32] DI L, WU G J, DAI W L, et al. Ru/TiO₂ for the preferential oxidation of CO in H₂-rich stream: effects of catalyst pre-treatments and reconstruction of Ru sites[J]. Fuel, 2015, 143: 318-326.
- [33] SAYAN S, SUZER S, DO U. XPS and *in-situ* IR investigation of Ru/SiO₂ catalyst[J]. J. Mol. Struct., 1997, 410/411: 111-114.
- [34] NOZAWA T, MIZUKOSHI Y, YOSHIDA A, et al. Aqueous phase

reforming of ethanol and acetic acid over TiO_2 supported Ru catalysts[J]. Appl. Phys. B, 2014, **146**: 221-226.

- [35] KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A: General, 1998, 171: 13-29.
- [36] RITZKOPF I, VUKOJEVIC'S, WEIDENTHALER C, et al. Decreased CO production in methanol steam reforming over Cu/ZrO₂ catalysts prepared by the microemulsion technique[J]. Applied Catalysis A: General, 2006, **302**: 215-223.
- [37] ROSENBAUM J, VERSACE D L, ABBAD- ANDALLOUSI S, et al.

Antibacterial properties of nanostructured Cu-TiO₂ surfaces for dental implants[J]. Biomater. Sci., 2017, **5**: 455-462.

- [38] YIN M, WU C K, LOU Y, et al. Copper oxide nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(26): 9506-9511.
- [39] ZHANG H, ZHENG Z J, MA C J, et al. Tuning surface properties and catalytic performances of Pt-Ru bimetallic nanoparticles by thermal treatment[J]. ChemCatChem, 2015, 7(2): 245-249.
- [40] TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100(1): 170-175.

Monthly (Started in 1923) Vol.69 No.9 September 2018