251 research outputs found

    Pressure Effects on Thermodynamics of Polymer Containing Systems

    Get PDF

    How ICT and R&D affect productivity? Firm level evidence for China

    Get PDF
    Based on an extended three-step CDM model, this paper addresses the impacts of research and development (R&D) and information and communication technology (ICT) on firm productivity for the World Bank innovation survey data of China. The study includes ICT investment and R&D as the two main inputs into innovation and productivity. We find that R&D and ICT investments positively affect product innovation and process innovation, with R&D being more important for innovation and productivity, and ICT being more important for innovation and no direct effect on productivity. We conclude that R&D and ICT investments increase the probability of product innovation and process innovation, which increase firm’s productivity, suggesting that R&D and ICT investments indirectly affect productivity through innovation

    Mpemba Effect in Crystallization of Polybutene-1

    Full text link
    The Mpemba effect and its inverse can be understood as a result of nonequilibrium thermodynamics. In polymers, changes of state are generally non-equilibrium processes. However, the Mpemba effect has been rarely reported in the crystallization of polymers. In the melt, polybutene-1 (PB-1) has the lowest critical cooling rate in polyolefins and tends to maintain its original structure and properties with thermal history. A nascent PB-1 sample was prepared by using metallocene catalysis at low temperature, and the crystallization behavior and crystalline structure of the PB-1 were characterized by DSC and WAXS. Experimentally, a clear Mpemba effect is observed not only in the crystallization of the nascent PB-1 melt in form II but also in form I obtained from the nascent PB-1 at low melting temperature. It is proposed that this is due to the differences in the chain conformational entropy in the lattice which influence conformational relaxation times. The entropy and the relaxation time can be predicted using the Adam-Gibbs equations, whereas non-equilibrium thermodynamics is required to describe the crystallization with the Mpemba effect

    Testing and Micromechanical Modelling of Rockfill Materials Considering the Effect of Stress Path

    Get PDF
    We have extended the micromechanics-based analytical (M-A) model to make it capable of simulating Nuozhadu rockfill material (NRFM) under different stress paths. Two types of drained triaxial tests on NRFM were conducted, namely, the stress paths of constant stress ratio (CSR) and the complex stress paths with transitional features. The model was improved by considering the interparticle parameter variation with the unloading-reloading cycles and the effect of the stress transition path. The evolution of local dilatancy at interparticle planes due to an externally applied load is also discussed. Compared with Duncan-Chang’s E-u and E-B models, the improved model could not only better describe the deformation properties of NRFM under the stress path loading, but also present the volumetric strain changing from dilatancy to contractancy with increasing transitional confining pressures. All simulations have demonstrated that the proposed M-A model is capable of modelling the mechanical behaviour of NRFM in the dam

    Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

    Get PDF
    GNS existence in PLLA favors α′ crystal formation more than α crystal formation resulting in a shift of α′–α crystal formation transition toward high Tcs.</p

    Structured iterative alternating sparse matrix decomposition for thermal imaging diagnostic system

    Get PDF
    In this paper, we propose a structured iterative alternating sparse matrix decomposition to efficiently decompose the input multidimensional data from active thermography into the sum of a low-rank matrix, a sparse matrix, and a noise matrix. In particular, the sparse matrix is further factorized into a pattern constructed dictionary matrix and a coefficient matrix. The estimation of the dictionary matrix and coefficient matrix is based on integrating the vertex component analysis with the framework of the alternating direction method of multipliers. In addition, the joint structure sparsity and nonnegative constraint are emphasized as part of the learning strategy. In order to verify the effectiveness and robustness of the proposed method, experimental studies have been carried out by applying the proposed method to thermal imaging diagnostic system for carbon fiber reinforced plastics (CFRP) defects detections. The validation study has been conducted by comparing the proposed method with the current state-of-the-art algorithms. The results indicate that the proposed method significantly improves the contrast ratio between the defective regions and the non-defective regions
    corecore