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Abstract: In this paper, we propose a structured iterative alternating sparse matrix decomposition to 

efficiently decompose the input multidimensional data from active thermography into the sum of a low-

rank matrix, a sparse matrix, and a noise matrix. In particular, the sparse matrix is further factorized into 

a pattern constructed dictionary matrix and a coefficient matrix. The estimation of the dictionary matrix 

and coefficient matrix is based on integrating the vertex component analysis with the framework of the 

alternating direction method of multipliers. In addition, the joint structure sparsity and nonnegative 

constraint are emphasized as part of the learning strategy. In order to verify the effectiveness and 

robustness of the proposed method, experimental studies have been carried out by applying the proposed 

method to thermal imaging diagnostic system for carbon fiber reinforced plastics(CFRP) defects 

detections. The validation study has been conducted by comparing the proposed method with the current 

state-of-the-art algorithms. The results indicate that the proposed method significantly improves the 

contrast ratio between the defective regions and the non-defective regions. 

Keywords: sparse decomposition, low-rank estimation, thermography defect detection 

 

1. Introduction 

Composite materials have been widely used in many fields such as aerospace, high-speed rail, 

automotive, etc. With the wide application of composite materials in various fields, the demand for 

composite material safety testing is increasing. Therefore, non-destructive testing(NDT) technology is 

particularly important for the safety assessment of composite materials [1]. Several traditional NDT 

techniques such as penetrant testing, eddy current testing, ultrasonic testing, and infrared thermography 

have been conducted in defect detection of composite materials [2]. Optical pulsed thermography(OPT) 

is a vision based NDT technology developed based on infrared temperature measurement and optical 

imaging [3]. Since OPT has the advantages of non-contact, non-invasive and fast, it has become the key 

technology to guarantee the quality of composite material. There are some strategies that focus on the 

excitation signal for defect detection capability enhancement, Busse et al. [4] proposed lock-in 
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thermography for NDT evaluation of materials. Mulaveesala et al. [5] proposed a pulse-compression 

approach to infrared NDT characterization and frequency-modulated thermal wave imaging to detect 

sub-surface defects [6]. Silipigni et al. [7] proposed an optimized pulse-compression technique for 

infrared thermography NDT evaluation. Laureti et al. [8] conducted a comparative study between linear 

and non-linear frequency-modulated pulse-compression thermography. Wu et al. [9] proposed halogen 

optical referred pulse-compression thermography for defect detection of CFRP. 

Theoretically, defects can be directly observed from the original image collected by the OPT system, 

however, due to the influence of noise, feature extraction algorithms are required to enhance the defect 

detection. Maldague et al. [10,11] proposed a pulse phase thermography (PPT) technique based on 

Fourier transform to extract the frequency domain characteristics of the thermal data. Shepard et al. [12] 

proposed a thermal signal reconstruction (TSR) method for enhancing the visibility of the thermography 

sequence by fitting the log-time temperature evolution. Zauner et al. [13] proposed pulsed phased 

thermography with the wavelet transform which preserves the time information of the signal since PPT 

loses the temporal information.  

In addition, researchers have applied matrix factorization techniques for defect feature extraction. 

Principal component analysis (PCA) has been widely used in thermal imaging systems [14]. It is used to 

calculate the principal components of the temporal data for enhancing the thermal contrast of defect 

information. Rajic et al. [15] proposed a principal component thermography (PCT) algorithm to enhance 

flaw contrast and characterize flaw depth in composite structures. Some improved algorithms based on 

PCA have been proposed as well. Yousefi et al. [16] proposed candid covariance-free incremental 

principal component thermography for thermal NDT testing and applied the K-medoids clustering 

approach to segment the defects in the specimens. Low-rank sparse principal component thermography 

[17,18] has been proposed by applying both L1 and L2 norm to test CFRP, Bell Tower, and wall infrared 

sets. A comparative study of PCA and partial least squares thermography on NDT investigation of 

paintings on canvas is proposed in [19]. In addition, Yang et al. [20] proposed independent component 

analysis (ICA) to improve the thermal contrast for CFRP debond detection. Lu et al. [21] proposed an 

ensemble variational Bayes tensor factorization (EVBTF) to conduct the super-resolution of the debond 

detection by deep mining the sparse tensor. It is based on the variational Bayesian framework [22] which 

decomposes the given tensor into a low-rank tensor, a sparse tensor, and a noise tensor. The 

decomposition procedure is performed multiple times on the low-rank matrix until the sparse matrix 

satisfies the requirement of defect detection. Ahmed et al. [23] proposed a sparse low-rank matrix 

factorization (S-MoG) algorithm for debond detection in CFRP composite based on integrating the 

mixture of Gaussian (MoG) model and multilayer structure [24].  

Matrix factorizations are widely used in many industrial applications. The matrix factorization 

problem can be solved by a set of traditional factorization methods such as SVD [25]. With the 
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development in various fields, a family of matrix factorization models has been proposed such as non-

negative matrix factorization (NMF), sparse representation, robust principal component analysis 

(RPCA), etc.  

 NMF [26] solves the problem of V = WH where V is a given non-negative matrix, W and H are 

unknown with non-negative constraint. It is noted that in practical applications, the solution of sparse 

decomposition has attracted considerable attention [27]. In recent years, NMF has been applied in action 

detection [28], recommender systems [29], link prediction in temporal networks [30], etc. The research 

of NMF on thermal imaging are mentioned in [31,32,33]. The sparse representation model utilizes the 

training samples to learn a complete dictionary to obtain the sparse representation of the signal. In 

addition, sparse representation has been widely used in image processing, such as image fusion [34], 

classification [35], object detection [36], etc. In particular, Wright et al. [37,38] defined the problem of 

decomposing a given data matrix into the sum of a low-rank matrix and a sparse matrix as RPCA which 

can be described to solve Y=L+S with unknown L (low-rank matrix) and S (sparse matrix). This problem 

can be represented by the following convex optimization problem; 

 
* 1,

min     s.t.  + =+
L S

L S L S Y                         (2) 

where ‖·‖∗ denotes nuclear norm, ‖·‖1denotes the L1 norm. The optimization problem (1) is termed as 

the robust principal component pursuit (RPCP). In the real situation, Y contains noise, that is, Y=L+S+N, 

then (1) becomes 

 
2

* 1,
min     s.t.  + -

F
+ 

L S
L S L S Y                         (2) 

where ‖·‖F denotes the Frobenius norm. The optimization problem (2) is termed as the stable principal 

component pursuit (SPCP). The RPCA has been used in applications such as target tracking [39] and 

hyperspectral image processing [40]. 

Although the existing feature extraction algorithms can enhance defects detections, they have 

limited or poor performance for detecting weak defects (weak thermal signatures from hard-detectable 

defects) on complex and irregular surfaces. To deal with these limitations, we propose a structured 

iterative alternating sparse matrix decomposition model to extract structured sparse features of thermal 

imaging data for debond detection. The model decomposes the given matrix into a low-rank component, 

a sparse component and a noise component. The model can efficiently enhance the contrast ratio between 

the defective and non-defective regions significantly. In addition, only a few requirements are needed 

for parameter setting and this is validated by carrying out robustness test on different samples. Six 

different CFRP samples with various sizes of debond defects at different depth levels are used to test the 

robustness and efficiency of the proposed algorithm. Comparison studies have been undertaken with 

RPCA-based algorithms and state-of-the-art thermography algorithms. In addition, the results were 

quantitatively validated by using event-based F-Score [41] and signal-to-noise ratio(SNR) [42]. 
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The remaining of the paper has been organized as follows: The details of the proposed method and 

the quantitative detectability assessment indicators are described in Section 2. The experiment and result 

analysis are carried out in Section 3. Conclusion and further work are outlined in Section 4. 

2. Methodology 

2.1. Proposed Model 

In the proposed model, we decompose the given matrix into three matrices, which is Y = L + S + 

N, where Y represents the original data extracted from the infrared (IR) camera, L represents the low-

rank matrix, S represents the sparse matrix and N represents the noise matrix. In general, defects are 

spatially sparse, that is, the sparse matrix S contains the structure information of defects. Different defects 

have different spatial-temporal thermal pattern since this is attributed to the fact that the size and depth 

of the defects are different. We introduce dictionary matrix D to represent the structured thermal pattern. 

Thus, the sparse matrix S can be factorized into a dictionary matrix D and a coefficient matrix W. The 

model thus becomes Y = L + DW + N. In particular, Fig. 1 illustrates the strategy framework of the 

proposed method. 

a. Background modelling  

For weak signal extraction problem such as defect detection, most of the observed signals are  

background traces, only a small amount of defect information exists in the thermographic sequence and 

they are unavoidably covered by the background traces. The proposed method adopts a strategy of 

removing the strong interference signal and simultaneously enhancing the contrast for defect signal from 

the remaining signal by estimating the background, and then subtracting the background data (L) from 

the observed data (Y) to enhance a rough positioning of the defect data (S). 

b. Mining sparse structure 

The estimation of the background paves the way forward for extracting the defect signal. It  

requires a dictionary matrix to characterize and subsequently enhance the thermal pattern of the defects. 

The expected enhancement by the dictionary matrix will ensure that the estimated defect signal does not 

only deviate from the original physical properties but also separate it from other components. In theory, 

defects and background will show completely different features, however, due to the effects of lateral 

and longitudinal thermal diffusion, the observed signals are not the expected feature signals as they are 

superimposed by the expected features. It hypothesizes that the expected features spanning a high-

dimensional space, and since the observed data is located in this high dimensional space, we can describe 

this characteristic with a simplex. In geometry, a simplex is a generalization of the notion of a triangle or 

tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a k-dimensional polytope which is the 

convex hull of its k + 1 vertices. Thus, we assume that there is a simplex that wraps the points of Y – L 

which can be seen as a mixture of vertices. These vertices are the thermal patterns, that is, the dictionary 
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D. Once the vertices are found, the relative weights of the vertices are further updated to obtain the 

structure of the sparse data. The procedure will be iteratively alternated until convergence. 

 

Fig. 1. Framework of the proposed algorithm. The proposed sparse matrix decomposition algorithm 

decomposes the given matrix into a low-rank component(L), a sparse component(S) and a noise 

component(N), the sparse component further decomposed into a dictionary matrix(D) and a coefficient 

matrix(W). The model estimates each component in an iterative and alternating manner. 

2.2. Alternating Structure Sparse Matrix Decomposition 

In order to enhance the defect information, the following minimization problem is generated 

 
( ) 2

2,0
min rank

subject to:  

F
 + + − −



L,W
L W Y L DW

W 0
                    (3) 

The parameter λ and μ in the formula are the regularization coefficient，the larger the coefficient, the 

stronger the regularization effect. W ≥ 0 is the weight nonnegativity constraint. However, (3) is an NP-

hard problem due to rank(·) and‖·‖2,0. To simplify the problem, we relax these terms to convex proxies. 

We use ‖·‖∗instead of rank(·), and ‖·‖2,1instead of ‖·‖2,0. The minimization problem becomes 

 ( ) 2

2,1
min RF

l  +
+ + − − +

L,W
L W Y L DW W                   (4) 

In video processing, it is hypothesized that pixels located in the same region will exhibit similar 

spatial-temporal characteristics. Thus, both spatial and time-domain features are considered highly 

correlated. Since the sparse matrix represents the structured thermal pattern, a common sparsity pattern 

is embedded. In [43], researchers adopted L2,1 norm defined by‖𝐗‖2,1 = 𝛴𝑖=1
𝑛 ‖𝐱𝑖‖2where xi denotes the  

i-th row of X to solve the joint sparsity model for pixels in a small neighborhood. In (4), ‖𝐖‖2,1 =

Input Thermal Sequences 

Output

Matrix Decomposition

Y = L + DW + N

Tensor to Matrix
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𝛴𝑖=1
𝑞 ‖𝐰𝑖‖2denotes the L2,1 norm of W, wi denotes the i-th row of W, we consider sparsity and correlation 

of W through L2,1 norm. The thermal features are stored in the columns of the dictionary matrix. The 

reason we expect W to be sparse is to select the features from the dictionary matrix. As shown in Fig. 2 

below, the first row of W is 0, indicating that the feature in the first column of D has no contribution. We 

require a certain row of W to be 0, which means the sum of the squares of the elements in the row is 0. 

Thus, we regularize each row with the L2 norm to obtain a vector and use the L1 norm to regularize this 

vector to enable feature selection. Thus, this is termed as the L2,1 norm. The second column of D in Fig. 

2 is the feature of the defect. If the current target point located at the defective region, the feature will 

have a large weight as shown in the red square in W. When we reconstruct the second row of W into an 

image, the pixel value corresponding to the defective region is larger than the non-defective region, to 

achieve the purpose of enhancing the defect detection. 

 

Fig. 2. Sparse matrix(W) to select features from the dictionary matrix(D). 

The last term of (4) is 𝑙𝑅+(𝐖) = 𝛴𝑖=1
𝑞

𝑙𝑅+(𝐰𝑖) and 𝑙𝑅+(𝐰𝑖)has the following form 

 ( )
0 i

R il
otherwise

+


= 

+

       w 0
w

    
                         (5) 

 The proposed minimization can be solved iteratively and alternatively in the estimation of L in (6), 

D in (7) and W in (8). The problem in (6) is convex and can be solved in many ways. As mentioned 

above, most of the thermal information is the background traces. Singular values often correspond to the 

dominant information in the matrix since the importance and singular value are positively correlated. 

Thus the components with larger singular values will be extracted to represent the background, that is, 

the low-rank matrix. Thus, we employ the Singular Value Thresholding algorithm [44] as a candidate 

solution. The dictionary matrix D in (7) can be estimated by using the vertex component analysis (VCA) 

[45] as the potential solution. For the problem of (8), we solve it by using the alternating direction method 

of multipliers (ADMM).  

 ( ) 
2

1 arg mink k k

F
+


= − − +

L

L L Y D W L                   (6) 

 ( )1 1VCAk k+ + −D Y L                          (7) 

 ( ) ( ) 
2

1 1 1

2,1
arg mink k k

R
F

l+ + +

+= − − + +
W

W Y L D W W W             (8) 

000000000000

D
W

irrelevant feature

feature of defects

:large value

reconstruct 

to image
×
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As mentioned in 2.1, We assume that the sparse data is located in simplex and the defect features 

are considered as the vertices of the simplex. Taking three-dimensional space as an example, as shown 

in Fig. 3, d1, d2, d3 and d4 represent thermal features, which is the column of D, S is a simplex. The idea 

of VCA is that it finds an initial vertex first, we can choose the pixel with the largest L2 norm in Y. Then 

it finds the orthogonal projection matrix of the found vertexes in every iteration, the pixel with the largest 

projection length is the new vertex. Add the new vertex to the vertex set and start the next iteration until 

all vertexes are found. 

d1

d2
d3

d4

S

                                                   

Fig. 3. S is a simplex, d1-d4 are vertices. 

In the problem (8), since we have already estimated L and D, we use Y’ in place of (Y-L), and 

consider the following model 

 ( ) 21

2,1
arg min 'k

RF
l+

+= − + +
W

W Y DW W W             (9) 

We now apply ADMM to solve this problem [43], the optimization problem (9) can be written as (10). 

      

( ) 21

1 2 32,1

1

2

3

arg min '

s.t.       

            

            

 

k

RF
l+

+= − + +

=

=

=

W

W Y C C C

C DW

C W

C W

              (10) 

Its augmented Lagrangian function is  

 

( ) ( )
2

1 2 3 1 2 3 1 2 32,1

2 2 2

1 1 2 2 3 3

1
, , , , , , '

2

                                             
2 2 2

RF

F F F

L l 

  

+= − + +

+ − − + − − + − −

W C C C U U U C Y C C

DW C U W C U W C U

     (11) 

The problem in (11) becomes (12), (13), (14) and (15) as expressed as follows 

 
1

2 2

1 1 1 1

1
arg min '

2 2F F


= − + − −

C

C C Y DW C U                (12) 

2

2

2 2 2 22,1
arg min

2 F


= + − −

C

C C W C U                   (13) 

 ( )
3

2

3 3 3 3arg min
2

R F
l


+= + − −

C

C C W C U                    (14) 

 
2 2 2

1 1 2 2 3 3arg min
2 2 2F F F

  
= − − + − − + − −

w

W DW C U W C U W C U       (15) 

The solution of (12) is expressed as 
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 ( )( )( )
1

1 1' 1 
−

= + − +C Y DW U                     (16) 

The solution of (13) is the vect-soft threshold [46], which is applied to each row of C2 independently in 

(17), where r denotes the r-th row of the matrix. 

 

( )( )

( )
( ) 

( ) 

2, 2 r

2 2

2

2 2

vect-soft , /

max ,0
      

max / ,0 /

r

r

r

r

 



   

= −

− −
= −

− − +

C W U

W U
W U

W U

                (17) 

The solution of (14) is  

 ( )3 3 ,0max= −C W U                               (18). 

The solution of W can be expressed as follows 

 ( ) ( ) ( ) ( )( )
1

1 1 2 2 3 32
−

 = + + + + + +W D D I D C U C U C U              (19). 

The solution of Lagrange multipliers is (20), (21) and (22).  

 
1 1 1= − +U U DW C                              (20) 

 
2 2 2= − +U U W C                               (21) 

 
3 3 3= − +U U W C                               (22) 

 The complete description for the proposed algorithm is shown in Table 1. 

Table 1. Proposed method 

Input: X matrix representation of the thermal signal. 

Output: thermal low-rank pattern L, sparse pattern S, coefficient matrix W 

Pre-processing: 

Y ← Vectorization (X) 

Initialize: q (represents the number of columns of D), L, D, W 

Repeat: 

1. ( )1 SVTk k k+  −L Y D W  

2. ( )1 1VCAk k+ + −D Y L  

3. Repeat: 

3.1 ( ) ( )( )( )
11 1 1

1 1 1i k k i i 
−+ + += − + − +C Y L D W U  

3.2 ( )( )1

2, 2 , /i i i

r  + = −
r

C vect-soft W U  

3.3  1 1

3 3max ,0i i i+ += −C W U  

3.4 ( )( ) ( ) ( )( )
1

1 1 1 1 1 1 1

1 1 2 2 3 32i k k k i i i i i i
−

 
+ + + + + + += + + + + + +W D D I D C U C U C U  
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3.5 1 1 1 1

1 1 1

i i k i i+ + + += − +U U D W C  

3.6 1 1 1

2 2 2

i i i i+ + += − +U U W C  

3.7 1 1 1

3 3 3

i i i i+ + += − +U U W C  

3.8 Update iteration: 1i i +  

Until convergence: 
1 1 1

2

k k i + + +− − Y L D W   or reached the maximum 

number of iterations, return
1k+

W  

4. Update iteration: 1k k +  

Until convergence:
2

k k k − − Y L D W  or reached the maximum number of 

iterations. 

2.3. Quantitative detectability assessment 

In order to estimate the detection ability of the proposed algorithm, the event-based F-score and SNR 

is used to measure the results. 

The F-score is defined as follows: 

 ( )
( )

2

2
-s 1

Precison Recall
F core

Precison Recall





= +

 +
                  (23) 

The precision and recall are defined as follows: 

 
TP

Precision =
TP+ FP

                           (24) 

 
TP

Recall =
TP+ FN

                           (25) 

where TP is true positive, denotes a defect exists and is detected; FP is false positive, denotes no defect 

exists but is detected; FN is false negative, denotes a defect exists but is not detected; TN is true negative, 

denotes no defect exists and none is detected. The β in (23) is a default value that determines the weight 

of the precision and recall. If the value of β is set to 1, it means that the recall is as important as the 

precision. However, in the field of NDT, it is highly demand to increase the recall rate while ensuring the 

precision. Therefore, the value of β is set to 2 which means that the recall is more important than the 

precision. 

 Fig. 4 shows the interpretation of event-based F-Score. In Fig. 4(a), the thermographic image is 

divided into 3×8 square grids. According to the label of the sample, each region as an event could be 

determined by the attribute (defect or non-defect) for the calculation of the F-score. Fig. 4(b) is the label 

of Fig. 4(a), where 1 indicates that the current grid contains defects, and 0 otherwise. Take Fig. 4(a) as 

an example, there are 8 events with defect in the figure, the rest are non-defect. According to the above 
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description, TP is 8, FP is 0, FN is 0, therefore, F-score is 1. 

The SNR is used to further evaluate the thermal contrast ratio between the defective and non-

defective regions is calculated according to equation (26), where Td is the temperature of all pixels in the 

local thermal image 1-1 in Fig. 5, Tnon is the temperature of all pixels in the local thermal image 1-2 

within valid heating area near the defect. The SNR of the entire thermal image is the average of the SNR 

calculated for all defects. 

 20 log10 d

non

T
SNR

T

 
=   

 
                           (26) 

non-defect 24 Eventsdefect

  

0

1

0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1

 

(a)                                             (b) 

Fig. 4. Illustration of event based F-Score. (a) Meshing. (b) Corresponding label.

1-1

1-2

2-1

2-2

3-1

3-2

4-1

4-2

5-1

5-2

6-1

6-2

 

Fig. 5. Illustration of SNR 

3. Experiment and result analysis 

3.1. Toy examples of the proposed method 

In order to verify the proposed method, a toy example is generated shown in Fig. 6. Fig. 6(a) is a 

real coding of the simulated mixed data, L is a rank-one low-rank matrix, D is a dictionary matrix with 

5 columns, the different 5 curves are shown in Fig. 6(a) which represent 5 dictionaries, W is a sparse 

coefficient matrix, Y is the mixed matrix. In addition to the low-rank and the sparse matrix, we added 

uniform noise in the observation. Parameter setting of the proposed method only requires to set the 

number of columns in the dictionary matrix D, which is represented by q. The set of q is 5. 

Fig. 6(b) shows the decomposition results when q is 5. The curves are not as smooth as the real D 

in the estimated dictionary whereas the shape and trend of the curves are consistent. The model has 

converged when the number of iterations is 15. Fig. 6(c) shows the decomposition result when q is 10. 

The five colored solid lines in estimated D are 1-5 columns of the estimated dictionary matrix. These 

five curves are similar to the results when q is 5. The five black dashed lines are the 5 overestimated 

dictionaries, corresponding to the 6-10 columns of the estimated dictionary matrix. The relationship 

between color and value can be generated from the color bar in W since the more the color tends to be 

blue, the smaller the value. As can be seen from the estimated W, the weights of these 5 overestimated 
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dictionaries are mostly 0, which means, these dictionaries contribute little to the final results. Therefore, 

they have rare effect on the reconstruction error. The model has not converged when the number of 

iterations is 15. Table 2 shows the results of 10 experiments for q equal to 5 and 10. From the table, it 

can be seen that when q is overestimated, the reconstruction error increases. Fig. 6(d) shows the 

decomposition result when q is 3. Although the reconstruction error converged to a small value, the shape 

and trend of the three curves in the estimated D are different from the real D in which indicates that the 

result of decomposition is wrong when q is smaller than the real situation. 

In summary, when q is equal to the real situation, the proposed method can effectively estimate the 

sparse pattern. When q is overestimated, the convergence speed will become slow and the reconstruction 

error will increase where the weights of the five overestimated dictionaries are mostly 0. 

Table 2. The results of q equal to 5 and 10 

q 1 2 3 4 5 6 7 8 9 10 Average 

5 0.37 0.37 0.38 0.36 0.37 0.37 0.38 0.34 0.37 0.40 0.37 

10  0.38 0.39 0.41 0.38 0.38 0.42 0.43 0.36 0.39 0.42 0.40 
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(d) 

Fig. 6. Toy examples of the proposed method. (a) Real coding of the simulated mixed data. L is the low-

rank matrix, D is the dictionary matrix, W is the coefficient matrix, Y is the mixed matrix. (b) Estimated 

results based on q = 5. (c) Estimated results based on q = 10. (d) Estimated results based on q = 3. 

3.2. Experimental setup and Sample Preparation 

The Optical Pulse Thermography (OPT) system is shown in Fig. 7. In our experiments, the halogen 

lamp is used as an excitation and it is controlled by the excitation source. We use IR camera (A655sc) to 

collect thermal image sequences. It is equipped with an uncooled Vanadium Oxide (VoX) 

microbolometer detector which can produce 480×640 thermal images. 50Hz frame rate is used to capture 

the thermal images. The test sample is held by the bracket and placed directly opposite the IR camera 

and halogen lamp.  

 

Fig. 7. Optical Pulse Thermography (OPT) system 

Six different samples are tested. Four of them are carbon fiber reinforced plastic sample with flat 

shape, two of them are carbon fiber reinforced plastic sample with curved shape which are more 

challenging. For the first four samples, they have sub-surface debond defects with different diameters 

and depths. The latter two samples have debond defects located in the elbow location which are difficult 

to be detected. The detailed information of these samples can be found in Table 3. Nine sets of 

experimental data were performed based on these six samples. Due to the honeycomb of test specimen 

1, only one-sided defects can be heated in each experiment, the results of specimen 1 correspond to data 

1 and data 3. 

Table 3. Samples 
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3.3. Thermographic image description 

Let 𝐗 ∈ ℝ𝑀×𝑁×𝐹 denotes a tensor containing the thermographic sequence image, 𝑀 × 𝑁, denotes 

the size of a single thermographic image, F, denotes the length of the sequence or the number of the 
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frames. Fig. 8(a) shows the selected image from the original thermal sequences and being partitioned in 

4 characteristic regions. These 4 regions include the defect region (number 1), the near defect region 

(number 4, on the test sample with strong interference background), the far defect region (number 3, on 

the test sample with weak interference background), and the non-thermal background region (number 2, 

excluding test sample). Fig. 8(b) shows the temperature transient characteristics of the 4 regions 

(temperature changes with heating and cooling time). It can be seen that region 2 and region 3 are easily 

distinguished from region 1 whereas the characteristics of region 4 and region 1 are more difficult to be 

separated. 

   

(a)                               (b) 

Fig. 8. Temperature characteristics of thermal data. (a) Four characteristic areas on the thermal image, 

where area 1 is the defect area; area 2 is the background without specimen area; area 3 is the non-

defective area away from defect; area 4 is the non-defective area near defect. (b) Line 1 - line 4 are the 

temperature transient characteristics corresponding to area 1 - area 4 where line 1 and line 4 are almost 

identical. 

  We transform the thermographic sequence data into a matrix 𝐘 ∈ ℝ𝐹×𝑃 before decomposing, F 

denotes the number of frames, the size of P is 𝑀 × 𝑁. As illustrated in Fig. 9, the vec-operator 

applied on a matrix 𝐗(: , : , 𝑓) stacks its columns into a row vector vec[X(: , :, f)]T. 

a11 a12 a13

a21 a22 a23

a31 a32 a33

........

a11 a21 a31 a12 a22 a32 a13 a23 a33

}

}

n =1,2,...,N

m
 =

1
,2

,...,M

Tensor X

vec[X(:,:,1)]T

vec[X(:,:,2)]T

vec[X(:,:,F)]T

Matrix Y

 

Fig. 9. Illustration of converting a 3-dimensional tensor into a 2-dimensional matrix by vectorising 

each frame. 

3.4. Model analysis 

 According to the description of 3.3, the defect region and the near defect region is hard to be 
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separated. The proposed model’s strategy is to remove the strong interference signal (background) and 

simultaneously enhance the contrast for defect signal from the remaining signal. However, there exists 

only rare defect information in the entire sequence. In other words, most of the thermal image sequence 

is background traces. The singular value decomposition is selected to approximate the physics behavior 

of the thermal spatial-transient characteristic. Singular values often correspond to the dominant 

information in the matrix since the importance and singular value is positively correlated. Thus the 

components with larger singular values will be extracted to represent the background, that is, the low-

rank matrix. With the simple calculation, the singular value decomposition will be able to extract the 

background signal which is beneficial for subsequent defect information enhancement. 

The estimation of the background paves the way forward for the proposed algorithm to extracting 

the defect signal. It requires a dictionary matrix to characterize and enhance the thermal pattern of the 

defects. The expected enhancement procedure by the dictionary matrix will ensure that the estimated 

defect signal does not deviate from the original physical properties but also separate it from other 

components. The VCA holds high potential to solving the problem. We will prove this choice from two 

aspects, one is the mathematical connection between thermal physics and VCA, the other is validation 

by the results. 

Due to the effects of lateral and longitudinal thermal diffusion, the observed signals are not the 

expected feature signals as they are superimposed by the expected features. In Fig. 10(a), we take 4 points 

a, b, c, and d, where point a represents the center of defect 2, we assume that the thermal feature of point 

a is the expected feature of defect, point b is the edge of defect 2, point c is the background near defect 

2, point d is the background far from defect 2. In Fig. 10(b), line 1-4 correspond to the thermal features 

of points a-d. It can be seen that line 1 and line 3 are easy to be distinguished, while line 2 and line 3 are 

similar. In theory, line 2 is similar to line 1, and line 3 is similar to line 4. However, since point b and 

point c are located at the boundary between the defect and the background region, they are affected by 

thermal diffusion, and the features of the two points can be regarded as the superposition of background 

and defect features. Thus, it is resulting in the features of point b and point c are quite similar. From the 

longitudinal direction, point a corresponds to line 1, point e corresponds to line 5, the non-defective area 

above point e is more thick than that above point a, and the temperature at point e is lower than the 

temperature at point a. This shows that the feature of the internal defect transport to the surface is a 

superposition of features of the defect and the non-defective area above the defect. The above description 

illustrates that the surface temperature signal we collected by the IR camera is a mixed signal, and the 

process of finding each signal feature is the process of unmixing. As we described in section 2, the 

observed data is located in this high dimensional space, simplex, data in simplex can be regarded as linear 

combination of vertexes which are dictionaries. 
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(a)                              (b) 

 Fig. 10. (a) Thermal diffusion effect. Point a, b, and e located in defective area, point c and d located in non-

defective area. (b) Line 1-line 5 correspond to the characteristics of the temperature change of points a-e over time. The 

temperature characteristics of point b(defect) and point c(non-defect) are difficult to distinguish. The temperature of 

point e(deeper defect)is lower than point a(surface defect).  

Fig. 11(a) is a manually selected dictionary, which is the thermal transient sequence of 4 

characteristic regions on the image in 3.3. It can be seen that the defect region (line 1) and the non-defect 

region near the defect region (line 4) are difficult to be distinguished. Fig. 11(b) is the dictionary 

estimated by VCA. We set the number of columns in the dictionary matrix to 4, and the four lines in the 

figure represent the four columns of the dictionary matrix, that is, four temperature characteristics. These 

four estimated characteristic curves are approximately the same in trend as the manually selected features 

from original thermal sequences, and more importantly, VCA directly enhanced the contrast of lines 1 

and line 4. Thus, it satisfies the initial expected enhance procedure where this not only can’t deviate from 

the original physical properties but also separate the defects from the other components.  

  

 (a)                                   (b) 

Fig. 11. Manually selected dictionary vs. VCA estimated dictionary. Line 1 corresponds to the defective area; line 

2 corresponds to the background area without test specimen; line 3 corresponds to the non-defective area away from the 

defect; line 4 corresponds to the non-defective area near the defect. (a) Manually selected dictionary. Line 1 and line 4 

are difficult to be distinguished. (b) VCA estimated dictionary. VCA enhanced the contrast between line 1 and line 4 
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3.5. Result and analysis 

 In order to evaluate the proposed algorithm, three RPCA based algorithms and five thermal based 

defect detection algorithms were selected for comparison. The three RPCA algorithms include: SPCP 

[47], online RPCA(OR-PCA) [48] and EVBTF which solved RPCA problem from the perspective of 

probability distribution, and proposed for defect detection. The five defect detection algorithms include: 

PCA, ICA, S-MOG, TSR, PPT. Among them, PCA, ICA, S-MOG are algorithms based on matrix 

factorization, TSR and PPT are algorithms with physical significance.  

SPCP decompose the given matrix into low-rank matrix, sparse matrix and noise matrix, we choose 

sparse matrix as the result. OR-PCA decompose the given matrix into low-rank matrix and sparse matrix, 

sparse matrix is corrupted noise that contain few information, therefore, we choose the low-rank matrix 

as the result. We apply PCA where the first 8 principal components are retained since experiments show 

that 8 principal components can meet the requirement, and then choose the component which has the 

best performance. The same setting is conducted for ICA. In TSR, the parameter that needs to be 

discussed is the order. In the following experiments, we choose the order of 5 to find the best results of 

TSR. PPT is applied to transfer the time domain signal into the frequency domain. The best phase thermal 

contrast image is selected for comparison. The parameter setting of the EVBTF and S-MOG is the layer 

selection, different layers are chosen according to different samples. 

The comparison visual results based on these algorithms and the proposed algorithm are given in 

Figs. 12 and. 13. In addition to the visual results, the results based on computational time are tabulated 

in Table 4, the comparative quantitative results based on the event-based F-Score (denoted by F2) and 

SNR are given in Table 5.  

 For visual results, we choose a flat sample (sample1) and a curve sample (sample 5) as Fig. 12 and 

Fig. 13, the remain results can be found in the supplementary file. In these figures, the first row is the 

results of the three RPCA based algorithms, the second row is the results of three matrix factorization 

based algorithms, the third row is the results of physical based algorithms and the proposed algorithm. 

It can be seen from the results that OR-PCA performs worst among other algorithms since it is an online 

algorithm and may lost some global temperature characteristics, PPT and TSR have higher defect 

detection rate on some test samples, but the result images contain a lot of noise compared to other 

algorithms, the proposed algorithm can extract defects on the thermal images and enhance the defect 

signals. Compared with other 8 algorithms, the results of the proposed are better and have less noise. 

From the detection rate, the proposed algorithm can extract more defects and enhance the weak signal of 

defects. In particular, the detection rate is significantly better than other algorithms, especially for the 

challenging samples with complex shape. From the aspect of parameter setting, all the detection results 

of the proposed method are based on the same setting of the parameters in which can validate its 
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robustness. 

 Table 4 shows the results based on computational time of algorithms. It can be seen from the results 

that PCA is the fastest algorithm, the three RPCA based algorithms, and the physical based algorithms 

are all inefficient. For a task whose detection accuracy requirement is higher than the detection efficiency, 

the proposed algorithm is acceptable in terms of the computational time 

Table 5 shows the F-Score and SNR based results, all the results of F-Score are quoted as a 

percentage and the average value for all methods is also shown in the table. From the table, it is evident 

that the proposed algorithm gives the highest F-Score and SNR on average than other algorithms. The 

‘Inf’ in Table 5 denotes positive infinity as there are no background and noise signals around the defects, 

as can be seen from the corresponding visual results. The calculation of all average SNR removes the 

results of sample 3 and sample 9, which contain the result of positive infinity. Combining the results of 

Table 5, the proposed algorithm is better in terms of detection ability and SNR. Even with a few 

exceptions, such as the F-Score of PCA and ICA in sample 3 is slightly higher than the proposed 

algorithm, the SNR is much lower than the proposed algorithm. 

 

3.6. Comparison of Different Parameter Settings 

In this work, the experimental results show that the proposed method has a high level of performance 

in defect extraction compared to other conventional detection methods. These results are highly impacted 

by the selection of the number of columns in the dictionary matrix, we use q to represent it. In the 

experiments, the number of q is selected as 6. This selection is based on a large number of experiments. 

In order to illustrate the effect of the value of q, we selected three different samples for validating. Each 

sample was tested three times by using different levels of q. The visual results of the experiment are 

shown in Fig. 14. As can be seen from the results in Fig. 14, when the value of q is selected too small (q 

= 2), a large amount of defect information is flooded by the background. This phenomenon can be seen 

especially from the third sample as it can hardly detect the defects. When the value of q is selected 

moderately (q = 6), defects can be detected and the information of detects is significantly enhanced. 

When the value of q is selected too large (q = 30), the defect can be detected whereas the noise near the 

defects of the first sample is significantly increased. All defects of the second sample are completely 

submerged by the noise. In the result of the third sample, not only the vicinity of the defects, the noise of 

the entire image is significantly increased. From the results of Table 6, when the value of q is set to 6, 

the values of the F-score and SNR are the highest. In summary, the selection of the number of columns 

in the dictionary matrix will impact the performance, and set this value to 6 can meet the requirement of 

the most application.  

From the visual perspective, the higher the rank of a matrix, the richer the detailed information it 

contains. Thus, the rank of the matrix has significant impacts on the detection results. Fig. 14 are the 
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results of using different rank on two samples. From the results in Fig. 15 (a)-(f) we can see that when 

the rank of matrix L is set to be small, although defects can be detected, the background traces is not well 

suppressed; when the rank of matrix L is set to be moderate, it can enhance defects detections while 

effectively suppress background traces; when the rank of matrix L is set to be large, matrix L contains 

not only background traces but also a large amount of defect’s information, resulting in the defect’s 

information in sparse matrix S is insufficient, defects are missed and the image contains a lot of noise. 

 

  

(a)                 (b)                 (c) 

   

(d)                 (e)                 (f) 

   

(g)                 (h)                 (i) 

Fig.12. Results of data 1(sample 1). (a)RPCA (b) OR-PCA (c)EVBTF (d)PCA (e)ICA (f)S-MOG 

(g)PPT (h)TSR (i)Proposed. 

   

(a)                 (b)                 (c) 

   

(d)                 (e)                 (f) 
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(g)                 (h)                 (i) 

Fig.13. Results of data 2(sample 5). (a)RPCA (b) OR-PCA (c)EVBTF (d)PCA (e)ICA (f)S-MOG 

(g)PPT (h)TSR (i)Proposed. 

 

Fig. 14. Visual results for different q. 

 

Fig. 15. Detection results for low-rank matrix with different rank. (a) rank is 1, defects are missed, the 

q = 2q = 2 q = 6 q = 30

q = 2 q = 6 q = 30

q = 2 q = 6 q = 30

(a) rank=1 (b) rank=3 (c) rank=5

(d) rank=1 (e) rank=3 (f) rank=5
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image contains lots of background traces. (b) rank is 3, all defects been detected, the background is 

effectively suppressed. (c) rank is 5, weak defects are covered by noise, and the image contains a lot of 

noise. (d) rank is 1, defects are missed, the image contains lots of background traces. (e) rank is 3, defects 

are missed, the background is effectively suppressed and the SNR is enhanced. (f) rank is 5, large number 

of defects are missed, and the image contains a lot of noise. 

Table 4. Performance comparison of computational time  

sample RPCA OR-PCA EVBTF PCA ICA S-MOG TSR PPT Proposed 

1 342.96 926.14 238.23 1.34 1.61 79.51 118.44 59.04 14.28 

2  230.62 785.45 230.12 1.60 1.90 27.34 117.95 59.90 8.32 

3 184.23 471.54 239.97 1.02 1.55 29.13 112.47 59.47 7.45 

4 194.64 948.67 256.27 1.54 2.06 28.05 125.75 58.13 8.95 

5 123.37 327.97 224.02 1.05 1.38 30.3 112.69 57.34 7.00 

6 264.15 699.99 361.28 2.24 2.84 44.95 123.19 61.51 12.40 

7 280.91 877.26 306.19 1.56 2.03 58.76 118.53 61.15 9.85 

8 456.60 587.17 454.35 1.86 2.70 81.65 124.30 62.28 26.51 

9 88.82 204.26 182.23 0.90 1.21 15.99 105.28 55.60 6.00 

Average 240.70 647.61 276.96 1.46 1.92 43.96 117.62 59.38 11.20 

 

Table 5. Performance comparison of F-score and SNR 

sample  RPCA ORPCA EVBTF PCA ICA S-MOG TSR PPT Proposed 

1 
F2 71.43% 76.47% 86.21% 76.47% 85.23% 71.43% 86.21% 76.47% 92.39% 

SNR 1.88 0.73 17.42 3.49 1.92 11.16 3.68 1.70 18.45 

2 
F2 86.53% 84.16% 96.15% 99.06% 90.48% 96.15% 84.16% 96.15% 100% 

SNR 3.54 0.85 7.83 6.62 4.92 9.63 4.24 4.74 17.96 

3 
F2 77.52% 53.72% 84.91% 87.36% 87.36% 90.23% 84.62% 86.14% 86.47% 

SNR 7.79 0.92 7.63 9.57 8.51 12.64 5.17 8.31 Inf 

4 
F2 84.91% 68.63% 90.91% 90.91% 90.91% 96.15% 92.59% 60% 100% 

SNR 1.64 0.65 4.47 3.59 3.42 4.08 4.51 2.02 22.83 

5 
F2 78.95% 0 78.95% 78.95% 78.95% 78.95% 78.95% 78.95% 98.77% 

SNR 7.15 0 4.49 2.63 2.96 9.92 4.99 0.27 6.67 

6 
F2 74.47% 74.47% 100% 100% 100% 100% 100% 100% 100% 

SNR 4.11 0.50 1.34 2.96 5.62 9.39 2.02 1.59 30.00 

7 F2 85.23% 94.59% 83.33% 85.71% 94.59% 85.71% 94.59% 97.22% 97.22% 
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SNR 4.7 8.39 8.83 0.33 0.66 13.07 0.70 0.95 29.09 

8 
F2 88.24% 75.76% 100% 75.76% 97.22% 75.76% 75.76% 100% 100% 

SNR 4.41 2.35 6.13 2.68 1.40 12.2 9.67 1.64 28.40 

9 
F2 48.39% 0 62.50% 62.50% 62.50% 48.39% 48.39% 33.33% 69.23% 

SNR 11.90 0 4.24 2.67 3.87 6.91 5.13 0.77 Inf 

Average 
F2 77.30% 58.64% 87.00% 84.08% 87.47% 82.53% 82.81% 80.92% 93.79% 

SNR 4.99 1.95 7.22 3.19 2.99 9.92 4.26 1.84 16.99 

Table 6. Performance comparison of F-score and SNR 

sample  q = 2 q = 6 q = 30 

3 
F-Score 22.12% 86.47% 84.27% 

SNR 0.87 Inf 29.91 

4 
F-Score 51.02% 100% 41.67% 

SNR 0.43 22.83 20.91 

6 
F-Score 0% 

0 

98.77% 

6.67 

88.61% 

3.40 SNR 

4. Conclusion and Feature Work 

In this paper, a structured iterative alternating sparse matrix decomposition has been proposed 

for thermal imaging diagnostic system. Since different regions on the image have different spatial-

temporal thermal characteristics, the physical interpretation of thermal patterns as well as the sparse 

decomposition has been established. The proposed sparse decomposition method allows abnormal 

patterns to be extracted automatically for flaw contrast enhancement. The proposed method is able to 

reduce interference from the background. Compared with current state-of-the-art methods, the evaluation 

results have shown that the proposed method has the best performance in defect extraction. However, 

the parameter setting is not fully automated. Future research will focus on defect detection in motion 

condition, especially for materials containing natural defects. 
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