8 research outputs found

    改进型XC502低压甲醇合成催化剂的制备

    Get PDF
    采用离子掺杂价态补偿原理及正交试验方法,在三组份Cu-Zn-Al低压甲醇合成催化剂中添加适量的IVB族和VB族金属氧化物助剂,研制五组份多促进的Cu-Zn-Al-M1-M2的甲醇合成催化剂XC502.实验结果表明,在5.0MPa、240℃的条件下,XC502催化剂耐热前的活性比Cu-Zn-Al催化剂高约10%,耐热后高约29%;XRD和DTA表征显示,XC502催化剂前驱态含绿铜锌矿[(Cu,Zn)(OH)2(CO3)]和孔雀石[(Cu2(OH)2CO3]构型的组份较多,分散度较好.这与XC502型催化剂具有低温高活性和较好的热稳定性密切相关

    改进型铜基甲醇合成催化剂NC208的DTA研究

    Get PDF
    对改进型铜基催化剂进行了研究,活性评价结果表明,改进型铜基甲醇合成催化剂NC208(Cu-Zn-Al-M12)初始活性比工业催化剂C207(Cu-Zn-Al)提高约18%;耐热试验后比C207提高约46%。两种催化剂的DTA对比试验显示,工作态NC208催化剂热稳定性明显优于C207;NC208催化剂前驱体含Cu(NO3)2·3Cu(OH)2、Zn5(OH)6(CO3)2和(CuZn)(OH)2CO3等成分比C207多,其分解温度小于350℃;NC208催化剂还原最高温度为235℃

    改进型铜基甲醇合成催化剂NC208的DTA研究

    Get PDF
    对改进型铜基催化剂进行了研究,活性评价结果表明,改进型铜基甲醇合成催化剂NC208(Cu-Zn-Al-M12)初始活性比工业催化剂C207(Cu-Zn-Al)提高约18%;耐热试验后比C207提高约46%。两种催化剂的DTA对比试验显示,工作态NC208催化剂热稳定性明显优于C207;NC208催化剂前驱体含Cu(NO3)2·3Cu(OH)2、Zn5(OH)6(CO3)2和(CuZn)(OH)2CO3等成分比C207多,其分解温度小于350℃;NC208催化剂还原最高温度为235℃

    改进型XC502低压甲醇合成催化剂的研究 Ⅱ.催化剂的活性位

    Get PDF
    采用XPS-Auger、XRD和FTIR等方法,对5组分Cu-Zn-Al-M1-M2改进XC502铜基低压甲醇合成催化剂进行了表征。XPS-Auger结果表明,XC502催化剂出现主峰为336.4eV(Cu+),而Cu-Zn-Al催化剂主峰为334.9eV(Cu0);XRD结果表明,两种工作态催化剂比氧化态新增峰的2θ分别为36.5°(Cu+)和43.3°(Cu0),XC502催化剂这两峰的强度比I36.5/I43.3是Cu-Zn-Al催化剂的2.1倍,说明工作态XC502催化剂单位Cu0中的Cu+含量比Cu-Zn-Al催化剂多;FTIR谱显示,XC502和Cu-Zn-Al两种工作态催化剂新增波数分别为622cm-1和627cm-1的振动峰,此新增峰可能是Cu+-O或Cu+-O-Zn2+的振动峰。改进型铜基甲醇合成催化剂的活性位可能是Cu0-Cu+-O-Zn2+/Al2O3-MOx

    Study of a modiFied low pressure copperbased catalyst XC502 For methanol synthesis

    No full text
    采用XPS-AugEr、Xrd和fTIr等方法,对5组分Cu-zn-Al-M1-M2改进XC502铜基低压甲醇合成催化剂进行了表征。XPS-AugEr结果表明,XC502催化剂出现主峰为336.4EV(Cu+),而Cu-zn-Al催化剂主峰为334.9EV(Cu0);Xrd结果表明,两种工作态催化剂比氧化态新增峰的2θ分别为36.5°(Cu+)和43.3°(Cu0),XC502催化剂这两峰的强度比I36.5/I43.3是Cu-zn-Al催化剂的2.1倍,说明工作态XC502催化剂单位Cu0中的Cu+含量比Cu-zn-Al催化剂多;fTIr谱显示,XC502和Cu-zn-Al两种工作态催化剂新增波数分别为622CM-1和627CM-1的振动峰,此新增峰可能是Cu+-O或Cu+-O-zn2+的振动峰。改进型铜基甲醇合成催化剂的活性位可能是Cu0-Cu+-O-zn2+/Al2O3-MOX。pectroscopic characterization of the active site of a modiFied low pressure copperbased catalyst XC502, prepared by adding a small amount of metal oxides of the VI B and VB groups to a CuZnAl catalyst For methanol synthesis, is carried out by XPSAuger, XRD and FTIR.The main peaks are detected by XPSAuger to be 336.4eV(Cu+) and 334.9eV(Cu0) on the surFaces of XC502 and the CuZnAl catalyst, respectively.The XRD result shows that two new peaks appear at 2θ=36.5°(Cu+) and 43.3°(Cu0) For those Functioning catalysts, but I36.5/I43.3 of XC502 is twice as large as that of the CuZnAl catalyst, showing that the surFace of the Functioning XC502 catalyst has higher Cu+/Cu0 ratio and valence stability than those of the CuZnAl catalyst.By applying FTIR spectroscopy, bands at 622 cm-1 and 627cm-1 are observed on the Functioning XC502 and CuZnAl catalysts, respectively, and the band may be assigned to Cu+OZn2+ bond vibration.In light of the above results, it is suggested that the active site on the Functioning XC502 copperbased catalyst For methanol synthesis at low pressure is probably  Cu0Cu+OZn2+/Al2O3MOx

    高硫合成气制甲硫醇K_2MoS_4/SiO_2催化剂

    No full text
    高硫合成气制甲硫醇K_2MoS_4/SiO_2催化剂杨意泉,车长针,袁友珠,方钦和,林国栋,张鸿斌(厦门大学化学系,厦门大学物理化学研究所,厦门361005)关键词负载型K_2MoS_4/SiO_2催化剂,甲硫醇,H_2S1.前言甲硫醇是合成蛋氨酸的重要原..

    Preparation of K_2MoS_4/SiO_2 Catalyst For Methanethiol Synthesis From High-H_2S Containing Syngas

    No full text
    高硫合成气制甲硫醇k_2MOS_4/SIO_2催化剂杨意泉,车长针,袁友珠,方钦和,林国栋,张鸿斌(厦门大学化学系,厦门大学物理化学研究所,厦门361005)关键词负载型k_2MOS_4/SIO_2催化剂,甲硫醇,H_2S1.前言甲硫醇是合成蛋氨酸的重要原...The eFFect of H_2S content in Feed-syngas, reaction temperature and pressure on the catalytic activity and reaction selectivity by one-step method over the catalyst K_2MoS_4/SiO_2 For methanethiol synthesis From high-H_2S containing syngas has been investigated.The results show that an optimum reaction condition may be 563 K, 2.0 3.0 MPa and 5 6% H_2S content in the Feed synga

    大连极紫外相干光源

    No full text
    先进光源的发展在前沿科学研究中发挥的作用越来越重要。近十年来,飞速发展的自由电子激光技术为科学家们提供了探索未知世界、发现新科学规律和实现技术变革的重要工具。建成的大连极紫外(EUV)相干光源的运行波段为50~150nm,单脉冲能量大于100μJ,且可提供10-12 s和10-13 s量级的超快激光脉冲,是我国第一台自由电子激光用户装置,并且是国际上唯一运行在极紫外波段的自由电子激光用户装置,在世界范围内为用户提供具有高峰值亮度和超短脉冲的极紫外激光。大连EUV相干光源是由国家自然科学基金委资助、由中国科学院大连化学物理研究所和上海应用物理研究所共同承担的重大科学仪器研制项目,目标是打造一个以先进极紫外光源为核心、主要用于能源基础科学研究的光子科学平台
    corecore