11 research outputs found

    權利濫用

    No full text

    [[alternative]]從情境學習理論談數學課程設計

    No full text
    [[issue]]313

    [[alternative]]Parametric study of along wind aeroelasticity for high-rise buildings with rectangular shapes

    No full text
    碩士[[abstract]]本論文探討使用強制振動方式對一系列不同比例高層建築之順風向氣彈行為進行系統識別,求得頻率相關之氣動力阻尼與氣動力勁度並比較之。本研究藉由白噪音之強制振動提出一套識別法,理論部分延續林勝偉的論文內容,首先在頻率域假設適當參數確立自激力矩與結構傾角位移之線性關係型式,在時域轉換成狀態空間方程式後,代入平滑流場下之強制振動結構運動方程式,並整合成氣彈互制之狀態空間方程式。比較不同風速下氣彈互制頻率反應函數之實驗與理論值,結合基因演算法與傳統梯度法最佳化進行曲線擬合,決定待求參數值並進而識別出結構的氣動力阻尼與氣動力勁度。 為了將理論推展應用並進行參數研究,本文使用9座模型進行識別試驗,共有3種高度,5種斷面深寬比,實驗組合為15組,因此結果總計有15組不同之氣動力導數比較。值得一提的是,有別於林勝偉的論文,本文進行曲線擬合時同時對七個風速下之轉換函數進行擬合,解決了由個別風速擬合所產生的不同氣動力導數問題;另外,本文亦提出以梯度法配合基因演算法求解,以達到更佳的擬合結果。根據15組識別結果顯示,順風向氣動力阻尼幾皆為負值,且較高之建築具較大氣動力阻尼;氣動力勁度之正負不定,但對氣彈效應貢獻不大。[[abstract]]This thesis investigates the aero-elastic behavior of a series of high-rise buildings with different shapes by using a novel identification scheme that employs the forced actuating technique. The aero-elasticity of the buildings are defined by the frequency-dependent aerodynamic damping and stiffness, and they were identified through wind tunnel experiments and parametric comparisons were finally made. By following the formulation in the thesis of Mr. Lin, the relation between the motion-induced moment and the rotation angle was firstly assumed to be linear. The frequency domain representation by the parameters to be determined can then be converted into a state space equation in time domain. The incorporation of such a relation with the equation of motion under wind flow and forced actuation further leads to an aero-elastic state space equation with an input from the forced actuation. The frequency response function thus induced from this aero-elastic state space equation can be used to compare with the experimental data by curve-fitting each other in order to determine the unknown parameters and consequently the aerodynamic damping and stiffness. In performing the curve-fitting, the genetic algorithm and traditional gradient method were used in corporation to fine tune the final results. The parametric study of building aero-elasticity was conducted by using nine building models in the wind tunnel tests, which results in totally fifteen sets of results. It is worth noticing that, unlike the way employed in the thesis of Mr. Lin, this research used the experimental data under all wind speeds simultaneously in curve-fitting, thus avoided the result inconsistency from every single data set. In addition, the traditional gradient method was also proposed in this research to improve the accuracy of curve-fitted results. According to the fifteen sets of identified results, it is observed that the aerodynamic dampings in the along-wind motion are all negative, and the value increases with the building height. However, the aerodynamic stiffness could be negative or positive, and their contribution to the building aero-elasticity is not significant.[[tableofcontents]]淡江大學論文提要…………………………………………………………………...I 英文提要……………………………………………………………………………..II 目錄………………………………………………………………………….………III 圖表目錄…………………………………………………………………………….IV 第一章 導論 ………………………………………………………………………1 1.1 前言 ………………………………………………………………………1 1.2 研究動機與目的 …………………………………………………………2 1.3 研究內容與架構 …………………………………………………………3 第二章 相關理論回顧 ………………………………………………………………5 2.1結構風載……………………………………………………………………5 2.1.1順風向風力 …………………………………………………………5 2.1.2橫風向風力 …………………………………………………………6 2.1.3扭轉向風力 …………………………………………………………7 2.1.4自身擾動力—氣動力阻尼 …………………………………………7 2.2橋樑受風振動………………………………………………………………8 2.2.1顫振(Flutter)………………………………………………………8 2.2.2扭轉發散(Torsional divergence) ………………………………9 2.2.3渦致振動(Votrex shedding)………………………………………9 2.2.4馳振(Galloping) …………………………………………………10 2.2.5抖振(Buffeting) …………………………………………………10 2.3系統識別 …………………………………………………………………10 2.3.1曲線擬合(非參數系統識別)………………………………………11 2.3.2控制典型式(Controllable Canonical Form) …………………15 2.4基因遺傳演算法則 ………………………………………………………19 第三章 基因遺傳演算法則…………………………………………………………22 3.1強制振動下之高層建築運動方程式 ……………………………………22 3.2結構參數之識別 …………………………………………………………23 3.2.1結構物之自然頻率與阻尼比識別…………………………………23 3.2.2結構物之轉動慣量率定……………………………………………24 3.3氣動力導數應用於高層建築之理論推導 ………………………………25 3.4對實驗轉換函數與相角作基因演算與梯度法曲線擬合 ………………29 3.5驗證實驗的正確性 ………………………………………………………30 第四章 實驗儀器與設備、實驗流程與實驗結果…………………………………32 4.1實驗儀器與設備 …………………………………………………………32 4.1.1大氣風動實驗室……………………………………………………32 4.1.2實驗模型……………………………………………………………32 4.1.3實驗儀器……………………………………………………………34 4.2實驗流程 …………………………………………………………………38 4.2.1結構系統識別………………………………………………………38 4.2.2順風向結構氣動力導數之識別實驗………………………………39 4.2.3紊流場驗證實驗……………………………………………………40 4.3實驗結果 …………………………………………………………………40 4.3.1結構物扭轉向之自然頻率與阻尼比識別…………………………40 4.3.2轉動慣量……………………………………………………………41 4.3.3結構勁度與阻尼係數………………………………………………42 4.3.4氣動力導數…………………………………………………………43 4.3.5紊流場實驗之驗證…………………………………………………45 第五章 結論與展望…………………………………………………………………46 參考文獻 ……………………………………………………………………………48 附圖與附表 表4.1 模型自然頻率與阻尼比----------------------------------------52 表4.2 模型轉動慣量 ----------------------------------------------52 表4.3 模型轉動向阻尼與勁度----------------------------------------53 表4.4 無因次化六參數----------------------------------------------53 表4.5 基因演算法、梯度法之穩定性檢測與時間域驗證------------------54 表4.6 紊流場實驗驗證----------------------------------------------55 圖3.1 氣彈力模型之強制振動試驗架設示意圖--------------------------56 圖4.1.1 九組模型實體圖--------------------------------------------57 圖4.1~4.75 多項式曲線擬合----------------------------------58~95 圖4.76~4.90 轉動慣量律定之線性迴歸-------------------------95~102 圖4.91~4.195 基因演算法與梯度法曲線擬合---------------------103~155 圖4.196~4.225 七風速實驗轉換函數比較與七風速擬合轉換函數比較-156~170 圖4.226~4.255 氣動力導數-------------------------------------171~185[[note]]學號: 693310517, 學年度: 9

    品管圈於高科技產業之個案研究

    No full text
    [[abstract]]QCC(品管圈活動)是一種需要長期努力,不斷的透過戴明PDCA管理循環來持續改善品質的一種活動。持續改善活動就如同「日行一善」一般,莫以為事小而不為,況且積沙成塔,品管圈活動就是本持著持續改善的精神而追求卓越。品管圈的推動是全面性,上至最高主管、下至基層員工都必須了解並接受相關的教育訓練,而且極需公司高層主管的支持與其他政策的長期配合。 本研究擬藉由生產LCD的高科技產業推動品管圈成功的案例,探討個案公司如何將品管圈活動的改善方法落實於生產運作中,並絀剖整個運作過程,將其實施成功經驗,整理出幾點心得與建議,期能提供給相關業界參考。其次,於較偏重於實務的技職體系中,盼能拋磚引玉作為教學上個案研討之範例

    Some results in wavelet theory and their applications

    No full text
    published_or_final_versionMathematicsMasterMaster of Philosoph

    校長的話

    No full text

    超臨界二氧化碳萃取茶葉精油及濃縮研究

    No full text
    A self-design experimental system was employed to improve the concentration of essential oils for Pao-chung oolong tea-leaf by using supercritical CO ?? extraction. The effects of temperature, CO ?? flow rate, back-pressure, and the addition of co-solvent on the extractive efficiency were studied. The densimeter was used to determine the concentrationof essential oils in the liquor. Results showed that the concentration of tea oils was found to increase with temperature, ranged from 25 ℃ to 60 ℃, but decreased at 80 ℃. It evidenced that the mass transfer between the oils-laden liquid CO ?? phase and the liquor phase was so slow that absorption alone controlled the overall extraction rate. The effect of co-solvent results in higher concentration of tea oils and increases with the amount of addition.本研究以自行設計之超臨界流體萃取實驗裝置,進行二氧化碳萃取包種烏龍茶, 並製成茶酒且探討濃度及萃取效率。內容含溫度、流速、吸收槽背壓、改性劑添加量諸效應 對於茶酒中可溶性成分及總濃度變化的影響。當壓力為 4500psig,溫度範圍為 25 ℃至 60 ℃時,萃出濃度隨溫度上昇而增大,顯示茶葉精油之蒸汽壓控制萃出濃度,但 80 ℃時,由 於二氧化碳密度下降,使得萃取效果降低。經實驗得知,較高流速下之茶葉精油萃出濃度較 佳,證明二氧化碳流速僅影響茶葉粉粒外部質傳阻力。改性劑添加量對茶葉精油的萃出率有 正面影響,且隨添加量增加而增大
    corecore