48 research outputs found

    High-index-faceted platinum nanoparticles: insights into structural and thermal stabilities and shape evolution from atomistic simulations

    Get PDF
    National Natural Science Foundation of China [51271156, 11204252]; Natural Science Foundation of Fujian Province of China [2013J06002]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20130121110012]High-index-faceted Pt nanoparticles exhibit exceptional electrocatalytic activity owing to the high density of low coordinated sites on their surface, and thus have attracted extensive studies over the past few years. In this study, we have employed atomistic simulations to systematically investigate the structural and thermal stabilities and shape evolution of Pt nanoparticles with different high-index facets, that is, tetrahexahedra enclosed by {hk0} facets, trapezohedra by {hkk} ones, and trisoctahedra by {hhk} ones. The results show that {221} faceted trisoctahedral nanoparticles display the best structural and thermal stabilities while {410} faceted tetrahexahedral ones display the worst. The shape stability of these nanoparticles generally decreases in the order from trapezohedron to tetrahexahedron to trisoctahedron. For the same type of polyhedron, the structural, thermal and shape stabilities of the nanoparticles all decrease according to the order of {2kl}, {3kl} and {4kl} facets. Further analyses have discovered that a large proportion of high-coordinated surface atoms are beneficial for enhancing both the thermal and shape stabilities. This work provides an in-depth understanding of surface structures and thermodynamic evolution of high-index-faceted metallic nanoparticles

    Tetrahexahedral Pt-Pd alloy nanocatalysts with high-index facets: An atomistic perspective on thermodynamic and shape stabilities

    Get PDF
    Metallic nanoparticles with high-index facets exhibit exceptional electrocatalytic activity owing to the high density of low coordination sites at the surface, thus they have attracted intense interest over the past few years. Alloying could further improve their catalytic activity by the synergy effects of high-index facets and electronic structures of components. Using atomistic simulations, we have investigated thermodynamic and shape stabilities of tetrahexahedral Pt-Pd alloy nanoparticles respectively bound by {210} and {310} facets. Energy minimization through Monte Carlo simulations has indicated that the outermost layer is predominated by Pd atoms while Pt atoms preferentially occupy the sub-outermost layer of nanoparticles. Molecular dynamics simulations of the heating process have shown that the {210} faceted nanoparticles possess better thermodynamic and shape stabilities than the {310} faceted ones. The coordination numbers of surface atoms were used to explore the potential origin of the different stabilities. Furthermore, a high Pt ratio will help enhance their stabilities. For both faceted nanoparticles, the melting has homogeneously developed from the surface into the core, and the tetrahexahedra have finally evolved into sphere-like shape prior to the overall melting. These results are helpful for understanding the composition and thermodynamic properties of high-index faceted nanoparticles, and are also of practical importance to the development of alloy nanocatalysts. ? 2014 The Royal Society of Chemistry

    Single-crystalline and multiple-twinned gold nanoparticles: an atomistic perspective on structural and thermal stabilities

    Get PDF
    National Natural Science Foundation of China [51271156, 11204252]; Natural Science Foundation of Fujian Province of China [2013J06002]; Fundamental Research Funds for the Central Universities of China [2012121010]Morphologies of gold nanoparticles play an important role in determining their chemical and physical (catalytic, electronic, optical, etc.) properties. Therefore, a fundamental understanding of the morphological stability is of crucial importance to their applications. In this article, we employed atomistic simulations to systematically investigate the structural and thermal stabilities of gold particles with eight representative nanoshapes, including single-crystalline and multiple-twinned structures. Our investigation has revealed that the truncated octahedron and the octahedron possessed the best structural stability, while the tetrahedron and the icosahedron did the worst. Further analyses have discovered different thermal stabilities and diverse melting behaviors in these particles. Especially, an inhomogeneous melting of the icosahedron was disclosed, and the relevant mechanism was elucidated. This study provides significant insight not only into the experimental preparation of gold nanoparticles but also into the design of gold nanostructures with both high catalytic activity and excellent stability

    Trisomy 21-induced Dysregulation of Microglial Homeostasis in Alzheimer’s Brains is Mediated by USP25

    Get PDF
    阿尔茨海默病(Alzheimer’s disease, AD)是一种最为常见的与记忆、认知能力退化相关的渐进性神经退行性疾病。唐氏综合征(Down’s syndrome, DS)是早发型阿尔茨海默病的一个重要风险因素,作为最常见的智力障碍遗传疾病,厦门大学医学院神经科学研究所王鑫教授团队揭示了治疗阿尔茨海默病和唐氏综合征新的治疗靶点,并且在小鼠模型上利用USP25小分子抑制剂成功地改善了阿尔茨海默病小鼠的认知功能,缓解了神经退行性病变的病理进程。该研究工作由王鑫教授指导完成,厦门大学医学院助理教授郑秋阳和博士生李桂林完成主要实验工作,王世华、朱琳、高月、邓青芳、张洪峰、张丽珊、吴美玲、狄安洁参与了部分研究工作。厦门大学医学院许华曦、赵颖俊和孙灏教授在研究过程中给予大力帮助和支持,清华大学董晨教授提供了Usp25基因敲除小鼠,厦门大学附属妇女儿童医院周裕林教授和郑良楷博士帮助收集了脑组织样品。Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer’s disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.This work was supported by the National Natural Science Foundation of China (31871077, 81822014, and 81571176 to X.W.; 81701130 to Q.Z.), the National Key R&D Program of China (2016YFC1305900 to X.W.), the Natural Science Foundation of Fujian Province of China (2017J06021 to X.W.), the Fundamental Research Funds for the Chinese Central Universities (20720150061 to X.W.), and the BrightFocus Foundation (A2018214F to Yingjun Zhao). 该研究工作得到国家重点研发计划项目、国家自然科学基金、福建省自然科学基金、厦门大学校长基金的资助和支持

    He-CO散射截面的量子力学研究

    No full text
    采用精确度较高的密耦方法(Close-Coupling)计算了He-CO碰撞的散射截面,能量从5 meV~70meV,计算结果与M.Keil等的实验结果(64 meV)基本相符.研究表明:势能的零点能位置、势阱深度、势阱位置、排斥势强度以及势能在势阱附近的方向性都对散射截面有较大的影响

    Defect-induced cracking and fine granular characteristics in very-high-cycle fatigue of laser powder bed fusion AlSi10Mg alloy

    No full text
    The evolution of defects during very-high-cycle fatigue (VHCF) is important for assessing the lifetime of AlSi10Mg alloy produced by laser powder bed fusion. In the study, VHCF experiments were carried out with an ultrasonic fatigue machine at a stress ratio of -1. Detailed characteristics of short cracks in VHCF were investigated by metallographic serial sections using scanning electron microscope and electron backscatter diffraction. Results show that the defects with nominal stress of 49-60 MPa have different degrees of cracking. As a result of the difference in defect shape, nominal stress and microstructure, fatigue cracks exhibit different cracking modes and propagation paths. Grain refinement behavior occurs at short cracks under VHCF, and the heterogeneous distribution of fine grains underneath the crack surfaces is strongly related to the as-printed microstructure and crack propagation path. Statistical analysis suggests that regardless of the crystal orientation, the misorientation between fine grains and matrix grains tends to be 40-50. The average crack growth rate in VHCF is approximately in the range of 10(-12 )~ 10(-10) m/Cycle

    Very-high-cycle fatigue induced growth and amorphization of Si particles in additively manufactured AlSi10Mg alloy: Dependence of applied stress ratio

    No full text
    The microstructural evolution at the fracture surface in response to very-high-cycle fatigue (VHCF) under stress ratios (R) of-1 and 0.5 in an AlSi10Mg alloy produced by Laser Powder Bed Fusion was investigated. The results show that appreciable growth of the Si precipitates at the cellular network boundaries in the as-built micro-structure was observed under R =-1. Moreover, significant amorphization of the initial crystalline Si pre-cipitates occurred in the vicinity of the fracture surface under this condition. A layer of fine Al grains was developed in the fish-eye region of the fracture surface. These microstructural responses are rationalized by the generation of lattice defects including dislocations and sub-grain boundaries during cyclic pressing of crack surfaces under R =-1, which mediates the Si solute diffusion and re-precipitation in the alloy as well as the amorphization of initial Si crystalline precipitation. In contrast, far fewer dislocations were observed near the crack surfaces under R = 0.5, which is attributed to the absence of cyclic pressing of crack surfaces and severe plastic deformation in this scenario. This work provides insights into the stress ratio dependence of the micro -structural evolution in the fatigued Al alloys. The obtained knowledge is useful for future understanding of the fatigue failure in Al alloys produced by additive manufacturing
    corecore