65 research outputs found
Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development
厌氧铵氧化(anaerobic ammonium oxidation;anammox)是20世纪末被发现的氮循环新途径,这一重大发现不仅改变了生物代谢与物质循环的经典理论,而且深刻影响了对生物能量来源的认识,无光深海这个巨大的空间又多了一个可以进行化能自养"固碳"的微生物新成员.如果说海底热泉自养生物的发现是对"万物生长靠太阳"这一古训的挑战,广布于各种缺氧环境的anammox细菌的发现则可以说是对这一古训的完胜.anammox细菌以NO2?为最终电子受体氧化NH4+,生成N2,与反硝化微生物相似,在环境中行使着无机氮去除这一生物地球化学作用.然而,与异养的反硝化细菌不同,anammox细菌为无机化能自养细菌,从铵的厌氧氧化中获得代谢能形成跨膜质子驱动力(proton motive force;pmf)并合成细胞储能分子—三磷酸腺苷(ATP),进而进行无机碳固定.虽然anammox细菌与随后发现的另一极其重要的海洋氮素转化微生物—氨氧化古菌(AOA)—皆为化能自养微生物,但是,AOA以氨(而非铵根离子)为电子供体并以O2为最终电子受体进行能量代谢.因此,AOA生态过程主要发生在含氧的海水和沉积物中,而anammox细菌在缺氧的海水和沉积物中分布广泛,并在一些典型海洋极端环境中(如深海热液和海底冷泉)也有存在.一些研究显示,海洋中30%~70%氮气的产生可能源于anammox过程.在含氮污水处理工程领域,anammox构成了一种崭新的低能耗、低成本、高效率和节能减排技术.然而,这一科学发现来之不易,早在20世纪60年代就有科学家根据海洋地球化学观测数据提出了anammox这一生物地球化学过程存在的可能性,在20世纪70年代,有科学家根据化学反应热动力学原理,预测anammox细菌的存在,但在随后的十几年时间,该类微生物却一直没有被发现.作为低氧和缺氧环境中广泛分布的一类重要的氮循环细菌,是什么因素阻碍了其发现?又是什么因素最终促成了它的发现?对这些问题的分析给科学研究带来怎样的启示?本文从海洋anammox细菌生理生态学基础和科学研究规律出发,对上述问题进行了分析阐释.科技部创新方法工作专项项目(编号:2011IM010700);; 国家自然科学基金项目(批准号:91328209、91428308);; 国家重大科学计划项目(编号:2013CB955700);; 国家海洋局全球变化与海气相互作用专项项目(编号:GASI-03-01-02-05);; 中国海洋石油总公司“渤海海洋碳汇时间序列观测”(编号:CNOOC-KJ 125 FZDXM 00TJ 001-2014)和“南海西部海洋碳汇时间序列观测”科技项目(编号:CNOOC-KJ 125 FZDXM 00 ZJ 001-2014)资
海洋微型生物碳泵储碳机制及气候效应
海洋中存在一个巨大的惰性溶解有机碳(rdOC)库,可与大气CO2碳量相媲美.两个碳库之间的交换势必影响气候变化.rdOC可在海洋中保存数千年,构成了海洋储碳的重要机制.探寻rdOC碳库形成机制是认识海洋如何储碳的关键.新近提出的“海洋微型生物碳泵(MICrObIAl CArbOn PuMP,MCP)“理论指出,海洋微型生物是rdOC碳库的主要贡献者.本文从MCP的主动机制和被动机制及其环境调控出发,论述了海洋rdOC的组成与生物来源,rdOC组分的微型生物代谢途径,病毒的裂解过程以及浮游动物活动对rdOC生产的贡献,不同类群微型生物有机碳代谢特征及其生物标记物与碳氢同位素表征,以及MCP的能量代谢特征与储碳效率,并结合MCP储碳的地史证据展望了MCP在增加海洋储碳能力方面的应用前景.国家自然科学基金(批准号:91028001); 国家重大科学计划(编号:2013CB955700); 国家自然科学基金(批准号:91028005;91028011;41172030;41076091); 国家海洋公益性行业科研专项(批准号:201105021)资
中国海及邻近区域碳库与通量综合分析
中国海总面积约470万平方公里,纵跨热带、亚热带、温带、北温带等多个气候带.其中,南海北依\"世界第三极\"青藏高原、南邻\"全球气候引擎\"西太平洋暖池,东海拥有全球最宽的陆架之一,跨陆架物质运输显著,黄海是冷暖流交汇区域,渤海则是受人类活动高度影响的内湾浅海.中国海内有长江、黄河、珠江等大河输入,外邻全球两大西边界流之一的黑潮.这些鲜明的特色赋予了中国海碳储库和通量研究的典型代表意义.文章从不同海区(渤海、黄海、东海、南海)、不同界面(陆-海、海-气、水柱-沉积物、边缘海-大洋等),以及不同生态系统(红树林、盐沼湿地、海草床、海藻养殖、珊瑚礁、水柱生态系统等)多层面对海洋碳库与通量进行了较系统地综合分析,初步估算了各个碳库的储量与不同碳库间的通量.就海气通量而言,渤海向大气中释放CO2约0.22Tg Ca-1,黄海吸收CO2约1.15Tg Ca-1,东海吸收CO2约6.92~23.30Tg Ca-1,南海释放CO2约13.86~33.60Tg Ca-1.如果仅考虑海-气界面的CO2交换,中国海总体上是大气CO2的\"源\",净释放量约6.01~9.33Tg Ca-1.这主要是由于河流输入以及邻近大洋输入所致.河流输入渤黄海、东海、南海的溶解无机碳(DIC)分别为5.04、14.60和40.14Tg Ca-1,而邻近大洋输入DIC更是高达144.81Tg Ca-1,远超中国海向大气释放的碳量.渤海、黄海、东海、南海的沉积有机碳通量分别为2.00、3.60、7.40、7.49Tg Ca-1.东海和南海向邻近大洋输送有机碳通量分别为15.25~36.70和43.39Tg Ca-1.就生态系统而言,中国沿海红树林、盐沼湿地、海草床有机碳埋藏通量为0.36Tg Ca-1,海草床溶解有机碳(DOC)输出通量为0.59Tg Ca-1;中国近海海藻养殖移出碳通量0.68Tg Ca-1,沉积和DOC释放通量分别为0.14和0.82Tg Ca-1.总计,中国海有机碳年输出通量为81.72~103.17Tg Ca-1.中国海的有机碳输出以DOC形式为主,东海向邻近大洋输出的DOC通量约15.00~35.00Tg Ca-1,南海输出约31.39Tg Ca-1.综上,尽管从海-气通量看中国海是大气CO2的\"源\",但考虑了河流、大洋输入、沉积输出以及微型生物碳泵(DOC转化输出)作用后,中国海是重要的储碳区.需要指出的是,文章数据是基于中国海各海区碳循环研究报道,鉴于不同研究方法上的差异,所得数据难免有一定的误差范围,亟待将来统一方法标准下的更多深入研究和分析.国家重点研发计划项目(编号:2016YFA0601400);;国家自然科学基金项目(批准号:91751207、91428308、41722603、41606153、41422603);;中央高校基础研究项目(编号:20720170107);;中海油项目(编号:CNOOC-KJ125FZDXM00TJ001-2014、CNOOCKJ125FZDXM00ZJ001-2014)资
浅析DCS和PLC在冶金自动化行业的应用
DCS和PLC控制系统在冶金自动化中的应用都十分广泛,使得冶金生产的自动化和智能化水平得到提升。文章通过分析DCS和PLC控制系统的特点,进一步分析了DCS和PLC控制系统在冶金自动化中的应用。</jats:p
冶金自动化控制创新与未来应用探讨
近年来,在多方面利好因素的影响下,我国综合国力得到了显著的提升,从而有效的推动了各个领域的发展壮大,在这种发展形势下,人们对于冶金行业的关注度在不断的提升,为冶金行业的未来良好发展打下了坚实的基础。就当前实际情况来说,运用到我国冶金行业的现金科学技术大都是从国外引入进来的,其主要作用就是促进我国冶金行业运营生产水平的不断提升。在经过了大量的经验积累来看,企业通常较为关注的是将资金运用到项目的研发方面,所以加大了新技术新工艺的研究和创新。这篇文章主要围绕的是冶金自动化控制创新与未来实践运用展开全面深入的研究分析,希望能够对我国未来市场经济的发展起到积极的辅助作用。</jats:p
- …
