1,825 research outputs found

    Container transport network for sustainable development in South Korea

    Get PDF
    The ever-increasing tendency toward economic globalization highlights the importance of sustainable container transport networks to a country’s international trade, especially for an economy that is highly dependent on exports. This paper aims to develop a transport network connectivity index (TNCI) to measure the container transport connectivity from a multi-modal perspective. The proposed index is based on both graph theory and economics, considering transport infrastructure and capacity, cargo flow, and capacity utilization. Using the case of South Korea as an example, we apply the TNCI to assess the connectivity of the Busan, Gwangyang, and Incheon ports, representing approximately 96% of the container throughput in South Korea. The calculated TNCI not only provides insight into the assessment of sustainable port competitiveness, it also helps policymakers identify bottlenecks in multi-modal transport networks. To eliminate these bottlenecks, this paper offers some appropriate measures and specific strategies for port development, which in turn improves the connectivity of container transport networks for sustainable development

    Distinct enhancers of ptf1a mediate specification and expansion of ventral pancreas in zebrafish

    Get PDF
    AbstractDevelopment of the pancreas and cerebellum require Pancreas-specific transcription factor-1a (Ptf1a), which encodes a subunit of the transcription factor complex PTF1. Ptf1a is required in succession for specification of the pancreas, proper allocation of pancreatic progenitors to endocrine and exocrine fates, and the production of digestive enzymes from the exocrine acini. In several neuronal structures, including the cerebellum, hindbrain, retina and spinal cord, Ptf1a is transiently expressed and promotes inhibitory neuron fates at the expense of excitatory fates. Transcription of Ptf1a in mouse is maintained in part by PTF1 acting on an upstream autoregulatory enhancer. However, the transcription factors and enhancers that initially activate Ptf1a expression in the pancreas and in certain structures of the nervous system have not yet been identified. Here we describe a zebrafish autoregulatory element, conserved among teleosts, with activity similar to that described in mouse. In addition, we performed a comprehensive survey of all non-coding sequences in a 67kb interval encompassing zebrafish ptf1a, and identified several neuronal enhancers, and an enhancer active in the ventral pancreas prior to activation of the autoregulatory enhancer. To test the requirement for autoregulatory control during pancreatic development, we restored ptf1a function through BAC transgenesis in ptf1a morphants, either with an intact BAC or one lacking the autoregulatory enhancer. We find that ptf1a autoregulation is required for development of the exocrine pancreas and full rescue of the ptf1a morphant phenotype. Similarly, we demonstrate that a ptf1a locus lacking the early enhancer region is also capable of rescue, but only supports formation of a hypoplastic exocrine pancreas. Through our dissection of the complex regulatory control of ptf1a, we identified separate cis-regulatory elements that underlie different aspects of its expression and function, and further demonstrated the requirement of maintained ptf1a expression for normal pancreatic morphogenesis. We also identified a novel enhancer that mediates initiation of ptf1a expression in the pancreas, through which the signals that specify the ventral pancreas are expected to exert their action

    Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit

    Get PDF
    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication

    Automatic classification using concept knowledge of web documents

    Get PDF
    In order to classify web documents, we suggest a method using concept knowledge of category.In our study, the concept relations between keywords are extracted using hyperlink information and after the extracted keywords are classified into each category, these are used as an index.Then TFIDF for each category is extended to determine index weight value.The system is constructed for experimenting and estimating,which is consist of web robot, indexer, concept knowledge database for each category and the document classifier.Our system to be applied the extended TFIDF method shows an accuracy of 88% in automatic classifying of web documents

    Novel water filtration of saline water in the outermost layer of mangrove roots

    Get PDF
    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.Creative Research Initiative (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of the Ministry of Science, ICT and Future Planning (MSIP) , National Research Foundation (NRF) of Korea , ICT R&D program of MSIP/IITP (Korea

    Caroli's Syndrome with Autosomal Recessive Polycystic Kidney Disease in a Two Month Old Infant

    Get PDF
    Caroli's syndrome is a rare congenital disorder that involves intrahepatic bile duct ectasia and congenital hepatic fibrosis, frequently seen with concomitant autosomal recessive polycystic kidney disease (ARPKD). Literature on infants with ARPKD is rare. Here, we present a case of a two month old boy who was diagnosed with Caroli's syndrome and ARPKD
    corecore