162 research outputs found

    UCN anomalous losses and the UCN capture cross-section on material defects

    Full text link
    Experimental data shows anomalously large Ultra Cold Neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross-section on material defects is enhanced by a factor of 10^4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN.Comment: 13 pages, 4 figure

    Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating

    Full text link
    We present a new value for the neutron lifetime of 878.5 +- 0.7 stat. +- 0.3 syst. This result differs from the world average value (885.7 +- 0.8 s) by 6.5 standard deviations and by 5.6 standard deviations from the previous most precise result. However, this new value for the neutron lifetime together with a beta-asymmetry in neutron decay, Ao, of -0.1189(7) is in a good agreement with the Standard Model.Comment: 11 pages, 9 figures; extended content with some correction

    A New World Average Value for the Neutron Lifetime

    Full text link
    The analysis of the data on measurements of the neutron lifetime is presented. A new most accurate result of the measurement of neutron lifetime [Phys. Lett. B 605 (2005) 72] 878.5 +/- 0.8 s differs from the world average value [Phys. Lett. B 667 (2008) 1] 885.7 +/- 0.8 s by 6.5 standard deviations. In this connection the analysis and Monte Carlo simulation of experiments [Phys. Lett. B 483 (2000) 15] and [Phys. Rev. Lett. 63 (1989) 593] is carried out. Systematic errors of about -6 s are found in each of the experiments. The summary table for the neutron lifetime measurements after corrections and additions is given. A new world average value for the neutron lifetime 879.9 +/- 0.9 s is presented.Comment: 27 pages, 13 figures; Fig.13 update

    Nanoparticles as a possible moderator for an ultracold neutron source

    Full text link
    Ultracold and very cold neutrons (UCN and VCN) interact strongly with nanoparticles due to the similarity of their wavelengths and nanoparticles sizes. We analyze the hypothesis that this interaction can provide efficient cooling of neutrons by ultracold nanoparticles at certain experimental conditions, thus increasing the density of UCN by many orders of magnitude. The present analytical and numerical description of the problem is limited to the model of independent nanoparticles at zero temperature. Constraints of application of this model are discussed

    New Understanding of Ultra-Cold Neutron Production in Solid Deuterium

    Full text link
    Our recent neutron scattering measurements of phonons and other quasi-particle excitations in solid deuterium (sD2_2) and the extraction of the density of states for phonons and rotational transitions in sD2 have led us to a new understanding of the production of ultra-cold neutrons (UCN) in sD2. This new picture is somehow different to earlier published results for sD2. The cross section for UCN production in sD2 has been determined by using the density of states G1(E) in combination with the incoherent approximation and by a direct calibration of our measured neutron cross sections with the known cross section of the J=1 -> 0 rotational transition in deuterium. Both methods deliver new data on this cross section and agree quite well with direct measurements of this energy averaged UCN production cross section.Comment: 4 pages, 6 figure
    • …
    corecore