1,150 research outputs found

    Thermoelectric performance of weakly coupled granular materials

    Full text link
    We study thermoelectric properties of inhomogeneous nanogranular materials for weak tunneling conductance between the grains, g_t < 1. We calculate the thermopower and figure of merit taking into account the shift of the chemical potential and the asymmetry of the density of states in the vicinity of the Fermi surface. We show that the weak coupling between the grains leads to a high thermopower and low thermal conductivity resulting in relatively high values of the figure of merit on the order of one. We estimate the temperature at which the figure of merit has its maximum value for two- and three-dimensional samples. Our results are applicable for many emerging materials, including artificially self-assembled nanoparticle arrays.Comment: 4 pages, 3 figure

    Thermoelectric performance of granular semiconductors

    Full text link
    We study thermoelectric properties of granular semiconductors with weak tunneling conductance between the grains, g_t < 1. We calculate the thermopower and figure of merit taking into account the shift of the chemical potential and the asymmetry of the density of states in the vicinity of the Fermi surface due to n- or p-type doping in the Efros-Shklovskii regime for temperatures less than the charging energy. We show that for weakly coupled semiconducting grains the figure of merit is optimized for grain sizes of order 5nm for typical materials and its values can be larger than one. We also study the case of compensated granular semiconductors and show that in this case the thermopower can be still finite, although two to three orders of magnitude smaller than in the uncompensated regime.Comment: 4 pages, 4 figure

    Automatic annotation of eukaryotic genes, pseudogenes and promoters

    Get PDF
    BACKGROUND: The ENCODE gene prediction workshop (EGASP) has been organized to evaluate how well state-of-the-art automatic gene finding methods are able to reproduce the manual and experimental gene annotation of the human genome. We have used Softberry gene finding software to predict genes, pseudogenes and promoters in 44 selected ENCODE sequences representing approximately 1% (30 Mb) of the human genome. Predictions of gene finding programs were evaluated in terms of their ability to reproduce the ENCODE-HAVANA annotation. RESULTS: The Fgenesh++ gene prediction pipeline can identify 91% of coding nucleotides with a specificity of 90%. Our automatic pseudogene finder (PSF program) found 90% of the manually annotated pseudogenes and some new ones. The Fprom promoter prediction program identifies 80% of TATA promoters sequences with one false positive prediction per 2,000 base-pairs (bp) and 50% of TATA-less promoters with one false positive prediction per 650 bp. It can be used to identify transcription start sites upstream of annotated coding parts of genes found by gene prediction software. CONCLUSION: We review our software and underlying methods for identifying these three important structural and functional genome components and discuss the accuracy of predictions, recent advances and open problems in annotating genomic sequences. We have demonstrated that our methods can be effectively used for initial automatic annotation of the eukaryotic genome

    From 11% Thin Film to 23% Heterojunction Technology (HJT) PV Cell: Research, Development and Implementation Related 1600 × 1000 mm2 PV Modules in Industrial Production

    Get PDF
    Plasma-enhanced chemical vapor deposition (PECVD) developed for thin film (TF) Si:H-based materials resulted in large area thin film PV cells on glass and flexible substrates. However, these TF cells demonstrate low power conversion efficiency PCE = 11% for double and PCE = 13% for triple junction cells below predicted PCE ≈ 24%. PV cells on crystalline silicon (c-Si) provide PCE ≈ 17–19%. Cost of c-Si PV cells lowered continuously due to reducing price of silicon wafers and enlarging their size. Two factors stimulated a combination of PECVD films and c-Si devices: (a) compatibility of the technologies and (b) possibility for variation of electronic properties in PECVD materials. The latter results in additional build-in electric fields improving charge collection and harvesting solar spectrum. We describe a transformation of PECVD TF solar cell technology for 11% efficiency modules to heterojunction technology (HJT) c-Si modules with 23% efficiency. HJT PV structure comprises c-Si wafer with additional junctions created by PECVD deposited layers allowing development of single wafer PV cells with PCE ≈ 24% and the size limited by wafer (15.6 x 15.6 cm2). The chapter starts with background in PECVD and c-Si PV cells. Then, in Section 2, we describe electronic properties of PECVD materials in HJT PV structures. Section 3 deals with structure and fabrication process for HJT devices. In Section 4, we present and discuss performance characteristics of the devices. Section 5 describes implementation of the developed HJT module (1600 x 1000 mm2) based on HJT single wafer cells in industry with presentation and discussion of characteristics related to industrial production. Finally, Section 6 presents the outlook and summary of the chapter

    Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome

    Get PDF
    BACKGROUND: In computational analysis, the RING-finger domain is one of the most frequently detected domains in the Arabidopsis proteome. In fact, it is more abundant in Arabidopsis than in other eukaryotic genomes. However, computational analysis might classify ambiguous domains of the closely related PHD and LIM motifs as RING domains by mistake. Thus, we set out to define an ordered set of Arabidopsis RING domains by evaluating predicted domains on the basis of recent structural data. RESULTS: Inspection of the proteome with a current InterPro release predicts 446 RING domains. We evaluated each detected domain and as a result eliminated 59 false positives. The remaining 387 domains were grouped by cluster analysis and according to their metal-ligand arrangement. We further defined novel patterns for additional computational analyses of the proteome. They were based on recent structural data that enable discrimination between the related RING, PHD and LIM domains. These patterns allow us to predict with different degrees of certainty whether a particular domain is indeed likely to form a RING finger. CONCLUSIONS: In summary, 387 domains have a significant potential to form a RING-type cross-brace structure. Many of these RING domains overlap with predicted PHD domains; however, the RING domain signature mostly prevails. Thus, the abundance of PHD domains in Arabidopsis has been significantly overestimated. Cluster analysis of the RING domains defines groups of proteins, which frequently show significant similarity outside the RING domain. These groups document a common evolutionary origin of their members and potentially represent genes of overlapping functionality

    Construction technological project of the swimming pool building in Brno

    Get PDF
    Tématem diplomové práce je stavebně technologická příprava budovy bazénu v Brně. Stavba je koncipována jako sportovní zařízení se dvěma mísami u bazénu – velkou a malou vanou, velkou halou, šatnami a dalšími technickými prostory. Součástí práce je technická zpráva, časový a finanční plán, projekt zařízení staveniště, strojní sestava hlavních mechanizmů použitých během výstavby, dále časový plán a potřebný počet pracovníků.The subject of this diploma thesis is civil technical project of the swimming pool building in Brno. The construction is conceived as a sports facility with two parts of pool – a large and a small bath, a large hall, dressing rooms and other technical spaces. The thesis includes a technical report, time and financial plan of the building, project of construction site equipment, mechanical assembly of the main mechanisms used during construction, as well as a time plan and the necessary number of workers.
    corecore