3,676 research outputs found

    On the Blazhko Effect in RR Lyrae Stars

    Full text link
    The Blazhko effect is a long term, generally irregular modulation of the light curves that occurs in a sizeable number of RR Lyrae stars. The physical origin of the effect has been a puzzle ever since its discovery over a hundred years ago. We build here upon the recent observational and theoretical work of Szabo et al. on RRab stars who found with hydrodynamical simulations that the fundamental pulsation mode can get destabilized by a 9:2 resonant interaction with the 9th overtone. Alternating pulsation cycles arise, although these remain periodic, i.e. not modulated as in the observations. Here we use the amplitude equation formalism to study this nonlinear, resonant interaction between the two modes. We show that not only does the fundamental pulsation mode break up into a period two cycle through the nonlinear, resonant interaction with the overtone, but that the amplitudes are modulated, and that in a broad range of parameters the modulations are irregular as in the observations. This irregular behavior is in fact chaotic and arises from a strange attractor in the dynamics.Comment: 5 pages, 3 figure

    Ultra-low Amplitude Variables in the LMC -- Classical Cepheids, Pop. II Cepheids, RV Tau Stars and Binary Variables

    Full text link
    A search for variable stars with ultra-low amplitudes (ULA), in the millimag range, has been made in the combined MACHO and OGLE data bases in the broad vicinity of the Cepheid instability strip in the HR diagram. A total of 25 singly periodic and 4 multiply periodic ULA objects has been uncovered. Our analysis does not allow us to distinguish between pulsational and ellipsoidal (binary) variability, nor between LMC and foreground objects. However, the objects are strongly clustered and appear to be associated with the pulsational instability strips of LMC Pop. I and II variables. When combined with the ULA variables of Buchler et al (2005) a total of 20 objects fall close to the classical Cepheid instability strip. However, they appear to fall on parallel period-magnitude relations that are shifted to slightly higher magnitude which would confer them a different evolutionary status. Low amplitude RV Tauri and Pop. II Cepheids have been uncovered that do not appear in the MACHO or OGLE catalogs. Interestingly, a set of binaries seem to lie on a PM relation that is essentially parallel to that of the RV Tauri/Pop. II Cepheids.Comment: 13 pages, 13 (color) figures. Astrophysical Journal (accepted for publlication

    Design research and visual analysis

    Get PDF
    Design research has been built on the method and contextual paradigms that have been the traditions of a range of other research areas. This situation creates distinct issues and challenges for the researcher and the research community. Particularly in methods available for the visual analysis of product shape, it was sensed that the existing ones were not enough to provide information that was significant to design concerns. For the analysis of artefacts, there is a plethora of methods readily available. However it is our experience that, as borrowed investigative tools, these do not supply design-relevant information on consumer products. We discuss the need for a new way that effectively considers products as design artefacts while focusing exclusively on their outward appearance.Peer reviewe

    Period doubling bifurcation and high-order resonances in RR Lyrae hydrodynamical models

    Full text link
    We investigated period doubling, a well-known phenomenon in dynamical systems, for the first time in RR Lyrae models. These studies provide theoretical background for the recent discovery of period doubling in some Blazhko RR Lyrae stars with the Kepler space telescope. Since period doubling was observed only in Blazhko-modulated stars so far, the phenomenon can help in the understanding of the modulation as well. Utilising the Florida-Budapest turbulent convective hydrodynamical code, we identified the phenomenon in radiative and convective models as well. A period-doubling cascade was also followed up to an eight-period solution confirming that the destabilisation of the limit cycle is indeed the underlying phenomenon. Floquet stability roots were calculated to investigate the possible causes and occurrences of the phenomenon. A two-dimensional diagnostic diagram was constructed to display the various resonances between the fundamental mode and the different overtones. Combining the two tools, we confirmed that the period-doubling instability is caused by a 9:2 resonance between the 9th overtone and the fundamental mode. Destabilisation of the limit cycle by a resonance of a high-order mode is possible because the overtone is a strange mode. The resonance is found to be sufficiently strong enough to shift the period of overtone with up to 10 percent. Our investigations suggest that a more complex interplay of radial (and presumably non-radial) modes could happen in RR Lyrae stars that might have connections with the Blazhko effect as well.Comment: 9 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore