12 research outputs found

    A copper alloy light cannon from Grodno: an example of early firearms from Eastern Europe

    Get PDF
    The paper discusses a recent find of a copper alloy light cannon discovered at the Old Castle in Grodno, Belarus. The research aim was to analyse the artefact in all its possible aspects, including archaeological and historical contexts, possible analogies, and the gun’s technology of manufacture. This latter was done against a broad comparative background of what is known on manufacturing technologies of late medieval and modern period copper alloy firearms. First, the archaeological and historical contexts of the discovery are dealt with. Then, the morphology and typochronology of the cannon are discussed and relevant analogies are proposed. Next, the technology of manufacture of the cannon is studied on the basis of metallographic examinations and EDS analyses of the metal’s elemental composition. It was found out that the artefact had been made of leaded copper. The cannon can be dated with reasonable certainty to the late 14th c., as implied both by the find context, the morphology and the chemical composition of the artefact. Its deposition can be related to fights over the Old Castle in Grodno in this period, waged by Teutonic, Polish and Lithuanian forces. It can tentatively be proposed that the cannon was manufactured in a Teutonic Order’s workshop, but further research is necessary to verify this supposition

    ELECTROCHEMICAL CODEPOSITION OF MOLYBDENUM AND SELENIUM

    Get PDF
    The electrodeposition of the Mo-Se thin films from sulfate solution containing Na2MoO4 and H2SeO3 was studied. The process of deposition were conducted under potentiostatic condition on copper electrode. The effect of different potential, pH and time of deposition were examined. The deposits were characterized by X-ray diffraction, X-ray fluorescence and scanning electron microscopy

    The Mechanism of Phase Transfer Synthesis of Silver Nanoparticles Using a Fatty Amine as Extractant/Phase Transfer Agent

    Get PDF
    The paper presents the research results on synthesizing silver nanoparticles in aqueous solutions and their extraction into the organic phase. Studies have shown that it is best to perform the extraction process using n-hexane > cyclohexane > toluene > chloroform > ethyl acetate. The results show a correlation between the dielectric constant of the organic phase and its ability to extract nanoparticles. The lower the dielectric constant is, the higher the extractability. The hydrodynamic radius of the silver nanoparticles changes after transfer to the organic phase, depending greatly on the organic phase used. The extraction mechanism is complex and multi-step. As the first step, the Ag nanoparticles are transferred to the phase boundary. As the second step, the octadecylamine (ODA) molecules adsorb on the silver nanoparticles (AgNPs) surface. The change in particle shape was also noted. This suggests that the interfacial processes are more complex than previously reported. Below the initial concentration of ODA 2 × 10−4 M, the formation of a third phase has been observed. In a one-stage experiment, the concentration of silver nanoparticles after transferring to the organic phase was increased 500 times in about 10 s. The role of the concentration of ODA, therefore, is not only a measure of the extraction efficiency and productivity but functions as an enabler to maintain favorable biphasic processing, which underlines the role of the solvent again

    The mechanism of phase transfer synthesis of silver nanoparticles using a fatty amine as extractant/phase transfer agent

    Get PDF
    The paper presents the research results on synthesizing silver nanoparticles in aqueous solutions and their extraction into the organic phase. Studies have shown that it is best to perform the extraction process using n-hexane > cyclohexane > toluene > chloroform > ethyl acetate. The results show a correlation between the dielectric constant of the organic phase and its ability to extract nanoparticles. The lower the dielectric constant is, the higher the extractability. The hydrodynamic radius of the silver nanoparticles changes after transfer to the organic phase, depending greatly on the organic phase used. The extraction mechanism is complex and multi-step. As the first step, the Ag nanoparticles are transferred to the phase boundary. As the second step, the octadecylamine (ODA) molecules adsorb on the silver nanoparticles (AgNPs) surface. The change in particle shape was also noted. This suggests that the interfacial processes are more complex than previously reported. Below the initial concentration of ODA 2 × 10−4 M, the formation of a third phase has been observed. In a one-stage experiment, the concentration of silver nanoparticles after transferring to the organic phase was increased 500 times in about 10 s. The role of the concentration of ODA, therefore, is not only a measure of the extraction efficiency and productivity but functions as an enabler to maintain favorable biphasic processing, which underlines the role of the solvent again

    Synthesis of Co–Fe 1D Nanocone Array Electrodes Using Aluminum Oxide Template

    No full text
    Porous anodic alumina oxide (AAO) obtained via two-step anodization is a material commonly used as a template for fabricating 1D nanostructures. In this work, copper and cobalt-iron 1D nanocones were obtained by an electrodeposition method using AAO templates. The templates were produced using two-step anodization in H2C2O4. The Co–Fe nanostructures are characterized by homogeneous pore distribution. The electrocatalytic activity of the produced nanomaterials was determined in 1 M NaOH using the linear sweep voltammetry (LSV) and chronopotentiometry (CP) methods. These materials can be used as catalysts in the water-splitting reaction. The sample’s active surface area was calculated and compared with bulk materials

    Inhaler use technique course: an effective postgraduate training solution for pharmacists to enhance therapeutic outcomes as part of patient education

    No full text
    Abstract Background Patients with asthma and chronic obstructive pulmonary disease could benefit from education on using inhalers provided by pharmacists. However, pharmacists may have limited competencies, indicating the necessity to implement appropriate postgraduate courses. The study aimed to evaluate an inhaler use course for pharmacists, including its impact on participants’ knowledge and satisfaction. Methods The study involved 261 pharmacists from community pharmacies and was conducted between September 2019 and March 2021. A pre-post analysis of their knowledge of the topic was applied. Additionally, at the beginning of the course, participants were asked about their educational needs, and at the end, they completed a satisfaction survey. The preferred learning formats indicated by participants were interactive workshops and lectures. Results As a result of the course, both their actual and self-assessed level of knowledge significantly increased. The percentage of correct answers in the test before the training was 24.4%, while after, it was 84.3% (p < 0.0001). Before the course, their average self-assessed level of knowledge was 52.0%, and after the training, it increased to 90.0% (p < 0.0001). Almost all respondents stated that the course met their expectations. They estimated their satisfaction at 94.0% and the usefulness of the provided information at 98.0%. Conclusions Improved preparation of pharmacists resulting from their participation in the course can contribute to providing more professional advice to patients, thereby positively influencing the pharmaceutical care process in community pharmacies

    The Mechanism of Phase Transfer Synthesis of Silver Nanoparticles Using a Fatty Amine as Extractant/Phase Transfer Agent

    Get PDF
    The paper presents the research results on synthesizing silver nanoparticles in aqueous solutions and their extraction into the organic phase. Studies have shown that it is best to perform the extraction process using n-hexane > cyclohexane > toluene > chloroform > ethyl acetate. The results show a correlation between the dielectric constant of the organic phase and its ability to extract nanoparticles. The lower the dielectric constant is, the higher the extractability. The hydrodynamic radius of the silver nanoparticles changes after transfer to the organic phase, depending greatly on the organic phase used. The extraction mechanism is complex and multi-step. As the first step, the Ag nanoparticles are transferred to the phase boundary. As the second step, the octadecylamine (ODA) molecules adsorb on the silver nanoparticles (AgNPs) surface. The change in particle shape was also noted. This suggests that the interfacial processes are more complex than previously reported. Below the initial concentration of ODA 2 × 10−4 M, the formation of a third phase has been observed. In a one-stage experiment, the concentration of silver nanoparticles after transferring to the organic phase was increased 500 times in about 10 s. The role of the concentration of ODA, therefore, is not only a measure of the extraction efficiency and productivity but functions as an enabler to maintain favorable biphasic processing, which underlines the role of the solvent again

    Ru–Co alloy coatings electrodeposited on a MAX phase substrate as efficient catalysts for the hydrogen evolution reaction

    No full text
    This study investigates the structure, electrochemical behavior and hydrogen evolution reaction (HER) performance of electrodeposited Ru–Co alloy coatings. The alloys were prepared from a 0.75 M Co2+ + 0.025 M Ru3+ solution at various potentials ranging from −0.5 to −1.2 V vs. SCE. Results reveal that the Ru and Co deposition processes are interdependent. The deposition of nobler Ru from the mixed metal solution reaches pure diffusion control already at −0.7 V compared to −1.0 V from a single Ru bath. On the other hand, Co deposition is significantly facilitated in the presence of Ru in the solution. Consequently, as the deposition potential changes from −0.6 to −1.0 V, Ru–Co solid solution coatings characterized by a distinct globular morphology are formed, with their Co content increasing from 22.1/7.4 to 70.2/86.1 wt% for the Cu/Ti2AlC MAX phase substrate applied. The alloy catalysts are found to show much better HER activity and stability in alkaline than in acidic solutions. The best Ru–Co@Ti2AlC sample, electrodeposited at −0.6 V, requires an overpotential of only −95 mV to deliver a current density of −100 mA cm−2 in 1 M KOH, thus outperforming most Ru–Co-based HER electrocatalysts reported to date

    Electrochemical Method of Copper Powder Synthesis on Rotating Electrode in the Presence of Surfactants

    No full text
    This paper presents a method of synthesizing copper powders by electrochemical method with the use of a rotating working electrode. The influence of the rotation speed of the working electrode, the current density, the concentration of copper ions, and the addition of ethylene glycol on the shape, size, and size distribution of the obtained powders were investigated. Properties of the synthesized powders were characterized by scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). It has been shown that it is possible to obtain copper powders with a size of 1 µm by an electrochemical method using the rotary cathode, in sulphate bath with addition of ethylene glycol as a surfactant. Increasing current density causes a decrease in the average size of the obtained powder particles. The addition of 2.5% of ethylene glycol prevents the formation of dendritic powders. The change in the concentration of copper ions in the range from 0.01 to 0.15 mol/dm3 in the electrolyte did not show any significant effect on the size of obtained particles. However, higher concentrations of copper limiting the presence of dendritic-shape particles. Changing the speed of rotation of the electrode affects both the size and the shape of synthesized copper powder. For the rotational speed of the electrode of 115 rpm, the obtained powders have a size distribution in the range of 0-3 µm and an average particle size of 1 µm. The particles had a polygonal shape with an agglomeration tendency
    corecore