24 research outputs found

    Activation Pattern of Lower Leg Muscles in Running on Asphalt, Gravel and Grass

    Get PDF
    Running is performed on different natural surfaces (outdoor) and artifi cial surfaces (indoor). Different surface characteristics cause modifi cation of the lower leg muscle activation pattern to adopt ankle stiffness to these characteristics. So the purpose of our investigation was to study changes of lower leg muscles activation pattern in running on different natural running surfaces. Six male and two female runners participated. The participants ran at a freely chosen velocity in trials on asphalt while in trials on gravel, and grass surfaces they were attempting to reach similar velocities as in the trials on asphalt. Muscle activation of the peroneus brevis, tibialis anterior, soleus, and gastrocnemius medialis of the right leg was recorded. Running on asphalt increased average EMG amplitude of the m. tibialis anterior in the pre-activation phase and the m. gastrocnemius medialis in the entire contact phase compared to running on grass from 0.222±0.113 V to 0.276±0.136 V and from 0.214±0.084 V to 0.238±0.088 V, respectively. The average EMG of m. peroneus brevis in pre-activation phase increased from 0.156±0.026 V to 0.184±0.455 V in running on grass in comparison to running on gravel. Running on different surfaces is connected with different activation patterns of lower leg muscles. Running on asphalt requires stiff ankle joints, running on gravel requires greater stability in ankle joints, while running on grass is the least demanding on lower leg muscles

    Influence of an Acute Exposure to a Moderate Real Altitude on Motoneuron Pool Excitability and Jumping Performance

    Get PDF
    The aim of the study was to test whether ascending to a moderate real altitude affects motoneuron pool excitability at rest, as expressed by a change in the H-reflex amplitude, and also to elucidate whether a possible alteration in the motoneuron pool excitability could be reflected in the execution of lower-body concentric explosive (squat jump; SJ) and fast eccentric-concentric (drop jump; DJ) muscle actions. Fifteen participants performed four experimental sessions that consisted of the combination of two real altitude conditions [low altitude (low altitude, 690 m), high altitude (higher altitude, 2,320 m)] and two testing procedures (H-reflex and vertical jumps). Participants were tested on each testing day at 8, 11, 14 and 17 h. The only significant difference (p < 0.05) detected for the H-reflex was the higher H-reflex response (25.6%) obtained 15 min after arrival at altitude compared to baseline measurement. In terms of motor behavior, DJ height was the only variable that showed a significant interaction between altitude conditions (LA and HA) and time of measurement (8, 11, 14 and 17 h) as DJ height increased more during successive measurements at HA compared to LA. The only significant difference between the LA and HA conditions was observed for DJ height at 17 h which was higher for the HA condition (p = 0.04, ES = 0.41). Although an increased H-reflex response was detected after a brief (15–20 min) exposure to real altitude, the effect on motorneuron pool excitability could not be confirmed since no significant changes in the H-reflex were detected when comparing LA and HA. On the other hand, the positive effect of altitude on DJ performance was accentuated after 6 h of exposure.Slovenian Research Agency - Slovenia P5-014

    Predicting Vertical Jump Height from Bar Velocity

    Get PDF
    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine.This study was supported by grants awarded by the Spanish Ministry of Science and Innovation (DEP2012-35774) and Ministry of Education, Culture and Sport (Predoctoral Grant FPU12/00360)

    DIFFERENCES BETWEEN YOUNG (13-14 YEARS OF AGE) WATER POLO PLAYERS SELECTED AND NOT SELECTED TO THE NATIONAL TEAM

    No full text
    Young water polo players at age 13 to 14 years were examined once a year in a four- year period using three morphological and eight specific skill tests: body height and mass, vital capacity, swimming at distances 5, 25 and 200 meters, swimming 4x5 meters with changing directions, ball dribbling, vertical jump and reach, vertical eggbeater kick and velocity of a throw at the goal. From the sum of 139 players tested, a group of 73 non-selected and of 66 selected players to the national team (U16, wider selection) were formed and checked for differences. Differences in all observed variables (except body mass) were found between the groups (P<0.05). One significant discriminant function was revealed (canonical R = 0.52) and the accounted variance was 100 %, P = 0.000. The variables that most differentiated the groups were swimming tests at distances of 25 and 200 meters, followed by vertical-egg beater kick and throwing velocity, while morphological variables differentiated the groups least

    Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes.

    No full text
    BACKGROUND Increased flexibility is often desirable immediately prior to sports performance. Static stretching (SS) has historically been the main method for increasing joint range-of-motion (ROM) acutely. However, SS is associated with acute reductions in performance. Foam rolling (FR) is a form of self-myofascial release (SMR) that also increases joint ROM acutely but does not seem to reduce force production. However, FR has never previously been studied in resistance-trained athletes, in adolescents, or in individuals accustomed to SMR. OBJECTIVE To compare the effects of SS and FR and a combination of both (FR+SS) of the plantarflexors on passive ankle dorsiflexion ROM in resistance-trained, adolescent athletes with at least six months of FR experience. METHODS Eleven resistance-trained, adolescent athletes with at least six months of both resistance-training and FR experience were tested on three separate occasions in a randomized cross-over design. The subjects were assessed for passive ankle dorsiflexion ROM after a period of passive rest pre-intervention, immediately post-intervention and after 10, 15, and 20 minutes of passive rest. Following the pre-intervention test, the subjects randomly performed either SS, FR or FR+SS. SS and FR each comprised 3 sets of 30 seconds of the intervention with 10 seconds of inter-set rest. FR+SS comprised the protocol from the FR condition followed by the protocol from the SS condition in sequence. RESULTS A significant effect of time was found for SS, FR and FR+SS. Post hoc testing revealed increases in ROM between baseline and post-intervention by 6.2% for SS (p < 0.05) and 9.1% for FR+SS (p < 0.05) but not for FR alone. Post hoc testing did not reveal any other significant differences between baseline and any other time point for any condition. A significant effect of condition was observed immediately post-intervention. Post hoc testing revealed that FR+SS was superior to FR (p < 0.05) for increasing ROM. CONCLUSIONS FR, SS and FR+SS all lead to acute increases in flexibility and FR+SS appears to have an additive effect in comparison with FR alone. All three interventions (FR, SS and FR+SS) have time courses that lasted less than 10 minutes. LEVEL OF EVIDENCE 2c

    Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes.

    No full text
    BACKGROUND Increased flexibility is often desirable immediately prior to sports performance. Static stretching (SS) has historically been the main method for increasing joint range-of-motion (ROM) acutely. However, SS is associated with acute reductions in performance. Foam rolling (FR) is a form of self-myofascial release (SMR) that also increases joint ROM acutely but does not seem to reduce force production. However, FR has never previously been studied in resistance-trained athletes, in adolescents, or in individuals accustomed to SMR. OBJECTIVE To compare the effects of SS and FR and a combination of both (FR+SS) of the plantarflexors on passive ankle dorsiflexion ROM in resistance-trained, adolescent athletes with at least six months of FR experience. METHODS Eleven resistance-trained, adolescent athletes with at least six months of both resistance-training and FR experience were tested on three separate occasions in a randomized cross-over design. The subjects were assessed for passive ankle dorsiflexion ROM after a period of passive rest pre-intervention, immediately post-intervention and after 10, 15, and 20 minutes of passive rest. Following the pre-intervention test, the subjects randomly performed either SS, FR or FR+SS. SS and FR each comprised 3 sets of 30 seconds of the intervention with 10 seconds of inter-set rest. FR+SS comprised the protocol from the FR condition followed by the protocol from the SS condition in sequence. RESULTS A significant effect of time was found for SS, FR and FR+SS. Post hoc testing revealed increases in ROM between baseline and post-intervention by 6.2% for SS (p < 0.05) and 9.1% for FR+SS (p < 0.05) but not for FR alone. Post hoc testing did not reveal any other significant differences between baseline and any other time point for any condition. A significant effect of condition was observed immediately post-intervention. Post hoc testing revealed that FR+SS was superior to FR (p < 0.05) for increasing ROM. CONCLUSIONS FR, SS and FR+SS all lead to acute increases in flexibility and FR+SS appears to have an additive effect in comparison with FR alone. All three interventions (FR, SS and FR+SS) have time courses that lasted less than 10 minutes. LEVEL OF EVIDENCE 2c

    The acute effect of self-massage on the short-term recovery of muscle contractile function

    No full text
    Fast recovery is desirable in the performance of competitive sports. Foam rolling, a type of self-massage, has been shown to lower perceived ratings of fatigue, but physiological effects of foam rolling on short-term recovery have not been explored to date. The purpose of this study was to provide the preliminary data on the effects of self-massage via foam rolling on the recovery of muscle contractile function. Ten participants visited the laboratory on two occasions to perform 3 sets of 15 repetitions on a knee extension machine at 70% of 1 repetition maximum. This was followed either by foam rolling (intervention group) or passive rest (control group) for a period of ninety seconds, in a randomized order. Measures of muscle contractile function were performed prior to exercise, immediately following exercise, and after the control/intervention procedure. Main outcome variables included maximum voluntary contraction and response of the relaxed vastus lateralis muscle to a single electrical stimuli followed by two sets of double stimuli (10 Hz and 100 Hz, respectively). Both the foam rolling and passive rest promoted small recoveries (effect size = 0.2 – 0.6) on all main outcome variables (5.5 – 16.2 % and 4.7 – 8.3 % after foam rolling and passive rest, respectively) with no differences between them. Foam rolling appears to be equally effective as passive rest for short-term recovery of muscle contractile function

    Influence of an acute exposure to a moderate real altitude on motoneuron pool excitability and jumping performance

    Full text link
    The aim of the study was to test whether ascending to a moderate real altitude affects motoneuron pool excitability at rest, as expressed by a change in the H-reflex amplitude, and also to elucidate whether a possible alteration in the motoneuron pool excitability could be reflected in the execution of lower-body concentric explosive (squat jumpSJ) and fast eccentric-concentric (drop jumpDJ) muscle actions. Fifteen participants performed four experimental sessions that consisted of the combination of two real altitude conditions [low altitude (low altitude, 690 m), high altitude (higher altitude, 2,320 m)] and two testing procedures (H-reflex and vertical jumps). Participants were tested on each testing day at 8, 11, 14 and 17 h. The only significant difference (p < 0.05) detected for the H-reflex was the higher H-reflex response (25.6%) obtained 15 min after arrival at altitude compared to baseline measurement. In terms of motor behavior, DJ height was the only variable that showed a significant interaction between altitude conditions (LA and HA) and time of measurement (8, 11, 14 and 17 h) as DJ height increased more during successive measurements at HA compared to LA. The only significant difference between the LA and HA conditions was observed for DJ height at 17 h which was higher for the HA condition (p = 0.04, ES = 0.41). Although an increased H-reflex response was detected after a brief (15–20 min) exposure to real altitude, the effect on motoneuron pool excitability could not be confirmed since no significant changes in the H-reflex were detected when comparing LA and HA. On the other hand, the positive effect of altitude on DJ performance was accentuated after 6 h of exposure

    Neuromuscular Adaptations after an Altitude Training Camp in Elite Judo Athletes

    Get PDF
    The aim of this study was to investigate neuromuscular adaptations in elite judo athletes after three weeks of power-oriented strength training at terrestrial altitude (2320 m). Nineteen men were assigned to altitude training (AL) (22.1 ± 2.3 years) and sea level training (SL) (22.6 ± 4.1 years). Neuromuscular assessment consisted of: (1) maximal isometric knee extensor (KE) torque, (2) KE rate of torque development (RTD), (3) quadriceps activity and voluntary activation, (4) soleus Hreflex, (5) quadriceps single (TTW) and double twitch torque (TDB100) and contraction time (CTTW). There were no significant differences between groups at baseline for any of the observed parameters. Significant differences were found between groups in terms of change in RTD (p = 0.04). Cohen’s d showed a positive significant effect (0.43) in the SL group and a negative significant effect (−0.58) in the AL group. The difference between groups in changes in CTTW as a function of altitude was on the edge of significance (p = 0.077). CTTW increased by 8.1 ± 9.0% in the AL group (p = 0.036) and remained statistically unchanged in the SL group. Only the AL group showed a relationship between changes in TTW and TDB100 and changes in RTD at posttest (p = 0.022 and p = 0.016, respectively). Altitude induced differences in muscular adaptations likely due to greater peripheral fatigue.Spanish Ministry of Economy, Industry and Competitiveness under grant DEP2015-64350-P MINECO/FEDERSlovenian Research Agency (P5-0142)FPI pre-doctoral grant under grant BES -2016-07803
    corecore