23 research outputs found

    Vliv chemického složení oceli na numerickou simulaci plynulého odlévání sochorů

    Get PDF
    The chemical composition of steels has significant influence on the actual concasting process, and on the accuracy of its numerical simulation and optimization. The chemical composition of steel affects the thermophysical properties (heat conductivity, specific heat capacity and density in the solid and liquid states) often requires more time than the actual numerical calculation of the temperature fields of a continuously cast steel billet. Therefore, an analysis study of these thermophysical properties was conducted. The order of importance within the actual process and the accuracy of simulation were also determined. The order of significance of the chemical composition on thermophysical properties was determined with respect to the metallurgical length. The analysis was performed by means of a so-called calculation experiment, i.e. by means of the original numerical concasting model developed by the authors of this paper. It is convenient to conduct such an analysis in order to facilitate the simulation of each individual case of concasting, thus enhancing the process of optimization.Chemické složení ocelí má významný vliv na reálný proces plynulého odlévání a na přesnost jeho numerické simulace a optimalizace. Chemické složení oceli ovlivňuje termofyzikální vlastnosti (tepelné vodivosti, měrné tepelné kapacity a hustoty v tuhém i tekutém stavu) a jejich prostřednictvím ovlivňuje výpočet teplotního pole plynule odlévaných ocelových sochorů. Proto byla provedena analýza studie těchto termofyzikálních vlastností. Vliv významu chemického složení na termofyzikální vlastnosti byla určena s ohledem na metalurgickou délku. Analýza byla provedena pomocí takzvaných výpočetních experimentů, tj. pomocí originálního numerického modelu teplotního pole, který byl vyvinut autory tohoto příspěvku. Tato analýza usnadní a tím zlepší proces optimalizace plynulého odlévání oceli

    Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions

    Get PDF
    Modern automotive gasoline engines have highly efficient after-treatment systems that reduce exhaust gas emissions. However, this efficiency greatly depends on the conditions of the exhaust gas, mainly the temperature and air-fuel ratio. The temperature instability during transient conditions may cause a reduction in the efficiency of the three-way catalyst (TWC). By using a thermal energy storage system before TWC, this negative effect can be suppressed. In this paper, the effects of the temperature stabilization on the efficiency of the three-way catalyst were investigated on a 1-D turbocharged gasoline engine model, with a focus on fuel consumption and emissions. The thermal energy storage system (TESS) was based on PCM materials and was built in the exhaust between the turbine and TWC to use the energy of the exhaust gas. Three different materials were picked up as possible mediums in the storage system. Based on the results, the usage of a TESS in a gasoline after-treatment system has shown great potential in improving TWC efficiency. This approach can assist the catalyst to operate under optimal conditions during the drive. In this study, it was found that facilitating the heat transfer between the PCM and the catalyst can significantly improve the emissions' reduction performance by avoiding the catalyst to light out after the cold start. The TESS with PCM H430 proved to reduce the cumulative CO and HC emissions by 8.2% and 10.6%, respectively, during the drive. Although a TES system increases the after-treatment cost, it can result in emission reductions and fuel consumption over the vehicle's operating life

    Investigation of a Temperature Field of the Steel Billet 150x150 mm Continuously Cast

    Get PDF
    The solidification and cooling of a continuously cast billet and the simultaneous heating of the mold is a very complicated problem of three-dimensional (3D) transient heat and mass transfer. The solving ofuch a problem is impossible without numerical models of the temperature field of the concasting itself which it is being processed through the concasting machine (caster). The application of the numerical model requires systematic experimentation and measurement of operational parameters on a real caster as well as in the laboratory. The measurement results, especially temperatures, serve not only for the verification of the exactness of the model, but mainly for optimization of the process procedure. The most important part of the investigation is the measurement of the temperatures in the walls of the mold and the surface of the slab in the zones of secondary and tertiary cooling

    Importance of the experimental investigation of a concasting technology

    Get PDF
    The solidification and cooling of a continuously cast billet, slab cylinder, generally of a concasting and the simultaneous heating of the mold is a very complicated problem of three-dimensional (3D) transient heat and mass transfer. The solving of such a problem is impossible without numerical models of the temperature field of the concasting itself hich it is being processed through the concasting machine (caster). The application of the numerical model requires systematic experimentation and measurement of operational parameters on a real caster as well as in the laboratory. The measurement results, especially temperatures, serve not only for the verification of the exactness of the model, but mainly for optímization of the process procedure: real process input data numerical analyses optimization correction of real process. The most important part of the investigation is the measurement of the temperatures in the walls of the mold and the surface of the slab in the zones of secondary and tertiary cooling

    Optimalizace parametrů lití sochorů pomocí modelu teplotního pole

    No full text
    Import 02/06/2008PrezenčníNeuvedenoNeuveden

    Dynamický model teplotního pole plynule odlévané bramy

    No full text
    Import 04/10/2007Prezenční635 - Katedra tepelné technik

    Význam termofyzikálních vlastností ocelí pro numerickou simulaci procesu kontinuálního lití

    Get PDF
    The thermophysical properties of steels have significant influence on the actual concasting process, and on the accuracy of its numerical simulation and optimization. The determination of these properties (heat conductivity, specific heat capacity and density in the solid and liquid states) often requires more time than the actual numerical calculation of the temperature fields of a continuously cast steel billet, cylinder or slab (generally a concasting). The influence of individual properties should be neither under- nor over-estimated. Therefore, an analysis/parametric study of these thermophysical properties was conducted. The order of importance within the actual process and the accuracy of simulation and optimization were also determined. Individual properties, which, in some cases, were obtained from tables, and in others experimentally, were substituted by an approximation using orthogonal polynomials. The accuracy of each polynomial is dependent on the precision of individual values. The order of significance of individual thermophysical properties was determined with respect to the metallurgical length. The analysis was performed by means of a so-called calculation experiment, i.e. by means of the original and universal numerical concasting model developed by the authors of this paper. It is convenient to conduct such an analysis in order to facilitate the simulation of each individual case of concasting, thus enhancing the process of optimization.Termofyzikální vlastnosti ocelí mají významný vliv na reálný proces kontinuálního lití a na přesnost jeho numerické simulace a optimalizace. Určení těchto vlastností (tepelná vodivost, měrná tepelná kapacita a hustota v tuhé a kapalné fázi) často vyžaduje více času než vlastní numerický výpočet teplotních polí plynule odlitého ocelového sochoru, válce nebo bramy (obecně předlitku). Vliv individuálních vlastností by neměl být podceňován ani přeceňován. Proto byla uskutečněna analyza/parametrická studie těchto termofyzikálních vlastností. Bylo rovněž určeno pořadí významu v průběhu skutečného procesu a přesnost simulace a optimalizace. Individuální vlastnosti, které v některých případech byly získány z tabulek, v jiných experimentálně, byly nahrazeny aproximací za použití ortogonálních polynomů. Přesnost každého polynomu je závislá na přesnosti jednotlivých vlastností. Pořadí významu jednotlivých termofyzikálních vlastností byla stanovena vzhledem k metalurgické délce. Analyza byla prováděna pomocí t.zv. výpočtového experimentu, t.j. pomocí originálního a univerzálního numerického modelu plynulého odlévání vyvinutého autory tohoto článku. Je potřebné provádět takovou analyzu pro usnadnění simulace každého konkretního případu plynulého lití a tak zlepšit proces optimalizace

    High Quality Steel Casting by Using Advanced Mathematical Methods

    Get PDF
    The main concept of this paper is to utilize advanced numerical modelling techniques with self-regulation algorithm in order to reach optimal casting conditions for real-time casting control. Fully 3-D macro-solidification model for the continuous casting (CC) process and an original fuzzy logic regulator are combined. The fuzzy logic (FL) regulator reacts on signals from two data inputs, the temperature field and the historical steel quality database. FL adjust the cooling intensity as a function of casting speed and pouring temperature. This approach was originally designed for the special high-quality high-additive steel grades such as higher strength grades, steel for acidic environments, steel for the offshore technology and so forth. However, mentioned approach can be also used for any arbitrary low-carbon steel grades. The usability and results of this approach are demonstrated for steel grade S355, were the real historical data from quality database contains approximately 2000 heats. The presented original solution together with the large steel quality databases can be used as an independent CC prediction control system

    Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface

    Get PDF
    summary:The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well
    corecore