52 research outputs found
Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra
Interpretation of x-ray absorption near-edge structure (XANES) experiments is
often done via analyzing the role of particular atoms in the formation of
specific peaks in the calculated spectrum. Typically, this is achieved by
calculating the spectrum for a series of trial structures where various atoms
are moved and/or removed. A more quantitative approach is presented here, based
on comparing the probabilities that a XANES photoelectron of a given energy can
be found near particular atoms. Such a photoelectron probability density can be
consistently defined as a sum over squares of wave functions which describe
participating photoelectron diffraction processes, weighted by their normalized
cross sections. A fine structure in the energy dependence of these
probabilities can be extracted and compared to XANES spectrum. As an
illustration of this novel technique, we analyze the photoelectron probability
density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at
http://link.aps.org/abstract/PRB/v65/e20511
Polarized x-ray absorption spectra of CuGeO3 at the Cu and Ge K edges
Polarized x-ray absorption near edge structure (XANES) spectra at both the Cu
and the Ge K-edges of CuGeO3 are measured and calculated relying on the
real-space multiple-scattering formalism within a one-electron approach. The
polarization components are resolved not only in the unit cell coordinate
system but also in a local frame attached to the nearest neighborhood of the
photoabsorbing Cu atom. In that way, features which resist a particular
theoretical description can be identified. We have found that it is the
out-of-CuO4-plane p_{z'} component which defies the one-electron calculation
based on the muffin-tin potential. For the Ge K-edge XANES, the agreement
between the theory and the experiment appears to be better for those
polarization components which probe more compact local surroundings than for
those which probe regions with lower atomic density. Paper published in Phys.
Rev. B 66, 155119 (2002) and available on-line at
http://link.aps.org/abstract/PRB/v66/e155119.Comment: 15 pages, 6 figures. Published in Physical Review B, abstract
available on-line at http://link.aps.org/abstract/PRB/e15511
Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)
We present a detailed theoretical investigation on the magnetic properties of
small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and
Au(111). For this a fully relativistic {\em ab-initio} scheme based on density
functional theory has been used. We analyse the element, size and geometry
specific variations of the atomic magnetic moments and their mutual exchange
interactions as well as the magnetic anisotropy energy in these systems. Our
results show that the atomic spin magnetic moments in the Fe and Co clusters
decrease almost linearly with coordination on all three substrates, while the
corresponding orbital magnetic moments appear to be much more sensitive to the
local atomic environment. The isotropic exchange interaction among the cluster
atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe
and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in
general one or two orders of magnitude smaller when compared to the isotropic
one. For the magnetic properties of Ni clusters the magnetic properties can
show quite a different behaviour and we find in this case a strong tendency
towards noncollinear magnetism
Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations
We analyze the spontaneous magnetization reversal of supported monoatomic
chains of finite length due to thermal fluctuations via atomistic spin-dynamics
simulations. Our approach is based on the integration of the Landau-Lifshitz
equation of motion of a classical spin Hamiltonian at the presence of
stochastic forces. The associated magnetization lifetime is found to obey an
Arrhenius law with an activation barrier equal to the domain wall energy in the
chain. For chains longer than one domain-wall width, the reversal is initiated
by nucleation of a reversed magnetization domain primarily at the chain edge
followed by a subsequent propagation of the domain wall to the other edge in a
random-walk fashion. This results in a linear dependence of the lifetime on the
chain length, if the magnetization correlation length is not exceeded. We
studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial
anisotropy leads to a reduction of the magnetization lifetime due to a higher
reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi
Angle dependence of Andreev scattering at semiconductor-superconductor interfaces
We study the angle dependence of the Andreev scattering at a
semiconductor-superconductor interface, generalizing the one-dimensional theory
of Blonder, Tinkham and Klapwijk. An increase of the momentum parallel to the
interface leads to suppression of the probability of Andreev reflection and
increase of the probability of normal reflection. We show that in the presence
of a Fermi velocity mismatch between the semiconductor and the superconductor
the angles of incidence and transmission are related according to the
well-known Snell's law in optics. As a consequence there is a critical angle of
incidence above which only normal reflection exists. For two and
three-dimensional interfaces a lower excess current compared to ballistic
transport with perpendicular incidence is found. Thus, the one-dimensional BTK
model overestimates the barrier strength for two and three-dimensional
interfaces.Comment: 8 pages including 3 figures (revised, 6 references added
Many-body effects in x-ray absorption and magnetic circular dichroism spectra within the LSDA+DMFT framework
The theoretical description of photoemission spectra of transition metals was
greatly improved recently by accounting for the correlations between the d
electrons within the local spin density approximation (LSDA) plus dynamical
mean field theory (DMFT). We assess the improvement of the LSDA+DMFT over the
plain LSDA in x-ray absorption spectroscopy, which --- unlike the photoemission
spectroscopy --- is probing unocccupied electronic states. By investigating the
L2,3-edge x-ray absorption near-edge structure (XANES) and x-ray magnetic
circular dichroism (XMCD) of Fe, Co, and Ni, we find that the LSDA+DMFT
improves the LSDA results, in particular concerning the asymmetry of the L3
white line. Differences with respect to the experiment, nevertheless, remain
--- particularly concerning the ratio of the intensities of the L3 and L2
peaks. The changes in the XMCD peak intensities invoked by the use of the
LSDA+DMFT are a consequence of the improved description of the orbital
polarization and are consistent with the XMCD sum rules. Accounting for the
core hole within the final state approximation does not generally improve the
results. This indicates that to get more accurate L2,3-edge XANES and XMCD
spectra, one has to treat the core hole beyond the final state approximation.Comment: 4 figures, 1 table, 8 page
Proximity effects at ferromagnet-superconductor interfaces
We study proximity effects at ferromagnet superconductor interfaces by
self-consistent numerical solution of the Bogoliubov-de Gennes equations for
the continuum, without any approximations. Our procedures allow us to study
systems with long superconducting coherence lengths. We obtain results for the
pair potential, the pair amplitude, and the local density of states. We use
these results to extract the relevant proximity lengths. We find that the
superconducting correlations in the ferromagnet exhibit a damped oscillatory
behavior that is reflected in both the pair amplitude and the local density of
states. The characteristic length scale of these oscillations is approximately
inversely proportional to the exchange field, and is independent of the
superconducting coherence length in the range studied. We find the
superconducting coherence length to be nearly independent of the ferromagnetic
polarization.Comment: 13 Pages total. Compressed .eps figs might display poorly, but will
print fin
Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems
Andreev bound states in clean, ballistic SNS and SNSNS junctions are
calculated exactly and by using the Andreev approximation (AA). The AA appears
to break down for junctions with transverse dimensions chosen such that the
motion in the longitudinal direction is very slow. The doubly degenerate states
typical for the traveling waves found in the AA are replaced by two standing
waves in the exact treatment and the degeneracy is lifted.
A multiple-scattering Green's function formalism is used, from which the
states are found through the local density of states. The scattering by the
interfaces in any layered system of ballistic normal metals and clean
superconducting materials is taken into account exactly. The formalism allows,
in addition, for a self-consistent determination of the gap function. In the
numerical calculations the pairing coupling constant for aluminum is used.
Various features of the proximity effect are shown
Cryptoferromagnetic state in superconductor-ferromagnet multilayers
We study a possibility of a non-homogeneous magnetic order
(cryptoferromagnetic state) in heterostructures consisting of a bulk
superconductor and a ferromagnetic thin layer that can be due to the influence
of the superconductor. The exchange field in the ferromagnet may be strong and
exceed the inverse mean free time. A new approach based on solving the
Eilenberger equations in the ferromagnet and the Usadel equations in the
superconductor is developed. We derive a phase diagram between the
cryptoferromagnetic and ferromagnetic states and discuss the possibility of an
experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur
- …