52 research outputs found

    Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra

    Full text link
    Interpretation of x-ray absorption near-edge structure (XANES) experiments is often done via analyzing the role of particular atoms in the formation of specific peaks in the calculated spectrum. Typically, this is achieved by calculating the spectrum for a series of trial structures where various atoms are moved and/or removed. A more quantitative approach is presented here, based on comparing the probabilities that a XANES photoelectron of a given energy can be found near particular atoms. Such a photoelectron probability density can be consistently defined as a sum over squares of wave functions which describe participating photoelectron diffraction processes, weighted by their normalized cross sections. A fine structure in the energy dependence of these probabilities can be extracted and compared to XANES spectrum. As an illustration of this novel technique, we analyze the photoelectron probability density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at http://link.aps.org/abstract/PRB/v65/e20511

    Polarized x-ray absorption spectra of CuGeO3 at the Cu and Ge K edges

    Full text link
    Polarized x-ray absorption near edge structure (XANES) spectra at both the Cu and the Ge K-edges of CuGeO3 are measured and calculated relying on the real-space multiple-scattering formalism within a one-electron approach. The polarization components are resolved not only in the unit cell coordinate system but also in a local frame attached to the nearest neighborhood of the photoabsorbing Cu atom. In that way, features which resist a particular theoretical description can be identified. We have found that it is the out-of-CuO4-plane p_{z'} component which defies the one-electron calculation based on the muffin-tin potential. For the Ge K-edge XANES, the agreement between the theory and the experiment appears to be better for those polarization components which probe more compact local surroundings than for those which probe regions with lower atomic density. Paper published in Phys. Rev. B 66, 155119 (2002) and available on-line at http://link.aps.org/abstract/PRB/v66/e155119.Comment: 15 pages, 6 figures. Published in Physical Review B, abstract available on-line at http://link.aps.org/abstract/PRB/e15511

    Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)

    Full text link
    We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {\em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi

    Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    Get PDF
    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham and Klapwijk. An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle of incidence above which only normal reflection exists. For two and three-dimensional interfaces a lower excess current compared to ballistic transport with perpendicular incidence is found. Thus, the one-dimensional BTK model overestimates the barrier strength for two and three-dimensional interfaces.Comment: 8 pages including 3 figures (revised, 6 references added

    Many-body effects in x-ray absorption and magnetic circular dichroism spectra within the LSDA+DMFT framework

    Full text link
    The theoretical description of photoemission spectra of transition metals was greatly improved recently by accounting for the correlations between the d electrons within the local spin density approximation (LSDA) plus dynamical mean field theory (DMFT). We assess the improvement of the LSDA+DMFT over the plain LSDA in x-ray absorption spectroscopy, which --- unlike the photoemission spectroscopy --- is probing unocccupied electronic states. By investigating the L2,3-edge x-ray absorption near-edge structure (XANES) and x-ray magnetic circular dichroism (XMCD) of Fe, Co, and Ni, we find that the LSDA+DMFT improves the LSDA results, in particular concerning the asymmetry of the L3 white line. Differences with respect to the experiment, nevertheless, remain --- particularly concerning the ratio of the intensities of the L3 and L2 peaks. The changes in the XMCD peak intensities invoked by the use of the LSDA+DMFT are a consequence of the improved description of the orbital polarization and are consistent with the XMCD sum rules. Accounting for the core hole within the final state approximation does not generally improve the results. This indicates that to get more accurate L2,3-edge XANES and XMCD spectra, one has to treat the core hole beyond the final state approximation.Comment: 4 figures, 1 table, 8 page

    Polarized XANES spectra of titanium dichalcogenides – experiment and theory

    Full text link

    Proximity effects at ferromagnet-superconductor interfaces

    Full text link
    We study proximity effects at ferromagnet superconductor interfaces by self-consistent numerical solution of the Bogoliubov-de Gennes equations for the continuum, without any approximations. Our procedures allow us to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is reflected in both the pair amplitude and the local density of states. The characteristic length scale of these oscillations is approximately inversely proportional to the exchange field, and is independent of the superconducting coherence length in the range studied. We find the superconducting coherence length to be nearly independent of the ferromagnetic polarization.Comment: 13 Pages total. Compressed .eps figs might display poorly, but will print fin

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Get PDF
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    Cryptoferromagnetic state in superconductor-ferromagnet multilayers

    Full text link
    We study a possibility of a non-homogeneous magnetic order (cryptoferromagnetic state) in heterostructures consisting of a bulk superconductor and a ferromagnetic thin layer that can be due to the influence of the superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time. A new approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic states and discuss the possibility of an experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur
    corecore