11 research outputs found

    TEMPERATURE DISTRIBUTION IN THE COATBACT OF A PARTIALLY FIRE-PROTECTED MEMBER

    Get PDF
    Whenever fire unprotected steel members are attached to a fire-protected steel member and penetrate its passive fire protection, additional heat will be conducted to this member during a fire. This can result in a local hot spot in the primary member that may reduce the actual fire resistance. The wide variation in loss of fire resistance is because geometries can vary, and in particular because of the influence of the section factors of the attachments. The influence of the partial protection was experimentally and numerically studied at the Czech Technical University in Prague. Four partially fire-protected plates were heated according to the nominal standard fire curves in a small horizontal furnace. A Finite Element Analysis (FEA) was validated and was applied to a numerical study of an unprotected steel beam under fire separation sealing, which was connected to a steel column. A description was prepared of the development of heat for various fire exposures under fire protection of different lengths and nonlinear thermal conductivity with different section factors

    FIRE-PROTECTION WITH ALKALI-ACTIVATED CEMENT BINDER

    Get PDF
    Fire resistance of unprotected steel structures is very low and steel elements must be protected from fire. One possibility is to create a protective layer of a cement-based material. Most types of cement have a low resistance to high temperatures, reducing mechanical properties. In flammability tests, cement activated with alkaline compounds showed better properties compared to conventional types of cement. This paper represents the determination of the properties of two H-Cement mortars with experlite or fireclay sand. Experiments carried out in a small kiln simulating a 1D load showed differences between elements in terms of heat transfer to the tested elements. The calculation model created to predict the course of the experiments has been validated and the unknown properties of the material have been calculated based on the data collected. The samples were tested in a small fire furnace. Finally, the thermal conductivity pattern was determined depending on the temperature

    Recent developments and applications of the HYDRUS computer software packages

    No full text
    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite-element models for simulating the one- and two- or three-dimensional movement of water, heat, and multiple solutes in variably saturated media, respectively. In 2008, Šimůnek et al. (2008b) described the entire history of the development of the various HYDRUS programs and related models and tools such as STANMOD, RETC, ROSETTA, UNSODA, UNSATCHEM, HP1, and others. The objective of this manuscript is to review selected capabilities of HYDRUS that have been implemented since 2008. Our review is not limited to listing additional processes that were implemented in the standard computational modules, but also describes many new standard and nonstandard specialized add-on modules that significantly expanded the capabilities of the two software packages. We also review additional capabilities that have been incorporated into the graphical user interface (GUI) that supports the use of HYDRUS (2D/3D). Another objective of this manuscript is to review selected applications of the HYDRUS models such as evaluation of various irrigation schemes, evaluation of the effects of plant water uptake on groundwater recharge, assessing the transport of particle-like substances in the subsurface, and using the models in conjunction with various geophysical methods

    Recent developments and applications of the HYDRUS computer software packages

    No full text
    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite-element models for simulating the one- and two- or three-dimensional movement of water, heat, and multiple solutes in variably saturated media, respectively. In 2008, Šimůnek et al. (2008b) described the entire history of the development of the various HYDRUS programs and related models and tools such as STANMOD, RETC, ROSETTA, UNSODA, UNSATCHEM, HP1, and others. The objective of this manuscript is to review selected capabilities of HYDRUS that have been implemented since 2008. Our review is not limited to listing additional processes that were implemented in the standard computational modules, but also describes many new standard and nonstandard specialized add-on modules that significantly expanded the capabilities of the two software packages. We also review additional capabilities that have been incorporated into the graphical user interface (GUI) that supports the use of HYDRUS (2D/3D). Another objective of this manuscript is to review selected applications of the HYDRUS models such as evaluation of various irrigation schemes, evaluation of the effects of plant water uptake on groundwater recharge, assessing the transport of particle-like substances in the subsurface, and using the models in conjunction with various geophysical methods
    corecore