15 research outputs found

    EVALUATION OF BIODEGRADABILITY AND ENVIRONMENTAL IMPACT OF BIOWASTE LEACHATE

    Get PDF
    As the world’s population and urbanization have significantly increased in the past few decades, the generation of municipal solid waste has accelerated on global scale. The biowaste disposal, which is an integral part of municipal waste, leads to leachate production. These kinds of wastewater are characterized by complex composition with very high concentrations of organic and inorganic pollution substances and toxicity, which may have harmful impact on the environment. This study investigated the physico-chemical and biological characterization of leachate from biowaste. The experiments were conducted in batch performance with initial concentration of leachate, expressedas chemical oxygen demand, 12.21 ± 0.46 g O2/L and pH value 4.05 ± 0.13. Obtained results showed that leachate from biowaste have high value of chemical oxygen demand, toxicity and low pH. Overall efficiency of the process of aerobic biodegradation was 89 %. The abundance of viable bacterial cells and development of activated sludge flocs during the experiment confirmed the biodegradability of leachate from biowaste

    Bioremediation of Pharmaceutical Wastewater

    Get PDF
    Onečišćenje okoliša jedan je od glavnih izazova današnje civilizacije. Porast broja svjetskog stanovništva i urbanizacija, posebice u zemljama u razvoju, dovodi do nastajanja većih količina otpadnih voda. U današnje vrijeme, emisije industrijskih otpadnih voda predstavljaju sve veći problem uz moguće negativne učinke na zdravlje ljudi i okoliš. Farmaceutske otpadne vode mogu biti visoko opterećene organskim i anorganskim tvarima te toksične za ekosustav. Prije nego li se otpadna voda ispusti u okoliš, potrebno ju je obraditi kako bi se zadovoljili zakonom propisani uvjeti. Biološka obrada široko je zastupljena jer je učinkovita, ekonomična i okolišno prihvatljiva. Bioremedijacijom iskorištava se mikrobni metabolizam u optimalnim okolišnim uvjetima za uklanjanje onečišćujućih tvari te se dodatno može poboljšati bioaugmentacijom. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna.Environmental pollution is one of the major challenges of today’s civilization. The increase in world population and urbanization, especially in developing countries, leads to the production of greater amounts of wastewater. Nowadays, industrial wastewater emissions are an increasing problem and may have adverse effects on human health and the environment. Pharmaceutical wastewater can be highly loaded with organic and inorganic substances as well as toxic for the ecosystem. Before the wastewater is discharged into the environment, it must be treated to meet the legal requirements. Biological treatment is widely applied as an effective, economical and environmentally friendly solution. Bioremediation uses microbial metabolism in optimal environmental conditions for the removal of pollutants and can be further enhanced by bioaugmentation. This work is licensed under a Creative Commons Attribution 4.0 International License

    Sizing of Small Capacity Plants for Aerobic Treatment of Household Biowaste

    Get PDF
    Pripremom i konzumiranjem hrane u kućanstvima te održavanjem zelenih javnih površina, okućnica i vrtova nastaje biootpad koji je potrebno odvojeno sakupiti i obraditi u skladu s propisima iz područja zaštite okoliša, odnosno ciljevima gospodarenja otpadom u Republici Hrvatskoj. Na temelju sastava i količine komunalnog otpada procijenjene su godišnje količine biootpada razmatranog područja. Iz ulaznih podataka o količini biootpada te ulaznih procesnih podataka koji su relevantni za provedbu biološke obrade biootpada u aerobnim uvjetima, dimenzionirana je potrebna oprema i prostor uvažavajući dinamiku procesa i potrebne tehnološke operacije. U ovom radu je analizirano pretpostavljeno područje od oko 77 000 stanovnika te je pretpostavljeno da to stanovništvo proizvede oko 3 641 t god–1 biootpada. Biološkom obradom odvojeno sakupljenog biootpada u aerobnim uvjetima koja se provodi na kompostani malog kapaciteta procjenjuje se proizvodnja oko 2 575 t god–1 zrelog komposta, što predstavlja smanjenje ulazne mase biootpada od oko 34,1 %, odnosno volumena za oko 50,5 %. Troškovi izgradnje objekata i nabave opreme procjenjuju se na oko 16 305 000 kn (2 174 000 EUR), a ukupni troškovi rada postrojenja s uračunatom amortizacijom na oko 625 kn/t (83 EUR/t) ulaznog biootpada.Maintenance of green urban areas, backyards and gardens, as well as food preparation and consumption generate municipal biodegradable waste, i.e., biowaste that must be collected and processed in accordance with environmental protection regulations and waste management objectives of the Republic of Croatia. By determining the composition and amount of municipal waste, the quantities generated in the assumed area were estimated. From the mentioned input data on the amount of biowaste and input process data that are relevant for the implementation of biological treatment of biowaste in aerobic conditions, the necessary equipment and space were dimensioned, taking into account the dynamics of the process and the necessary technological operations. Thus, the operation of machines for shredding and mixing with a capacity of about 50 m3 h–1, aeration and irrigation with a capacity of about 1,000 m3 h–1, screening with a capacity of about 23.2 m3 h–1, as well as manipulation of biowaste and compost was planned. Four bioreactors with a capacity of about 1 421 t y–1 each, fans and other process-measuring equipment were planned. Waste air flow with biodegradation products were purified before released into the atmosphere using a biofilter of about 9 m2 and 1.5 m of filled layer of wood chips, bark, mature compost, and other additives. By composting about 3 641 t y–1 of biowaste, which is approximately the minimum amount of biowaste that a presumed area of about 77 000 inhabitants needs to be processed to meet the waste management objectives of the Republic of Croatia, the estimated production of about 2 575 t y–1 of mature compost would be reduced by about 34.1 %, or volume by about 50.5 %. About 2 174 000 EUR needs to be invested in facilities and equipment, with total operating costs of about 83 EUR/t of input biowaste

    Die rolle von umweltmikroorganismen beim biologischen abbau von xenobiotika

    Get PDF
    Kao posljedica ubrzane industrijalizacije, modernizacije i porasta broja svjetskog stanovništva, dolazi do povećane emisije ksenobiotika u sve sastavnice okoliša. Ksenobiotici čine mnogobrojnu i raznoliku skupinu kemijskih tvari koje su odgovorne za opsežna onečišćenja okoliša uzrokujući promjene u ekosustavima. Zbog postojanosti i otpornosti u okolišu postoji velika potreba za razgradnjom ovih ksenobiotskih spojeva na ekološki prihvatljiv način. Mikrobne zajednice imaju sposobnost razgradnje širokog raspona spojeva zbog čega je njihova uloga značajna za funkcioniranje ekosustava. Zahvaljujući velikom metaboličkom potencijalu, mikroorganizmi se mogu prilagoditi novim supstratima, pri čemu proizvode enzime odgovorne za razgradnju što može biti učinkovito sredstvo za detoksikaciju okoliša. Temeljitije poznavanje mikroorganizama i bolje razumijevanje metaboličkih puteva pri uklanjanju ksenobiotika omogućit će svrhovitu primjenu biorazgradnje.As a result of accelerated industrialization, modernization, and growth of the world population, there is an increased emission of xenobiotics into all components of the environment. Xenobiotics are a numerous and diverse group of chemical substances that are responsible for extensive environmental pollution and cause changes in ecosystems. Due to their persistence and resistance in the environment, there is a great need for environmentally friendly degradation of these xenobiotic compounds. Microbial communities are capable of degrading a wide range of compounds, which is why they play an important role in the functioning of ecosystems. Thanks to their high metabolic potential, microorganisms can adapt to new substrates and produce enzymes responsible for degradation, which can be an effective means of detoxifying the environment. A thorough knowledge of microorganisms and a better understanding of the metabolic pathways involved in the removal of xenobiotics will allow the ultimate application of biodegradation.Durch beschleunigte Industrialisierung, Modernisierung und das Wachstum der Weltbevölkerung kommt es zu einer erhöhten Freisetzung von Xenobiotika in die Umwelt. Xenobiotika bilden eine zahlreiche und vielfältige Gruppe chemischer Substanzen, die für eine starke Umweltverschmutzung verantwortlich sind und Veränderungen in Ökosystemen verursachen. Aufgrund ihrer hohen Umweltpersistenz und Widerstandsfähigkeit besteht eine große Notwendigkeit, die Xenobiotikaverbindungen umweltverträglich abzubauen. Mikrobielle Gemeinschaften haben die Fähigkeit, eine Vielzahl von Verbindungen abzubauen, weswegen ihre Rolle für das Funktionieren des Ökosystems von Bedeutung ist. Dank des großen metabolischen Potenzials können sich Mikroorganismen an neue Substrate anpassen, wobei sie Enzyme produzieren, die für den Abbau verantwortlich sind, was ein wirksames Mittel zur Umweltentgiftung sein kann. Gründlicheres Wissen über Mikroorganismen und besseres Verständnis von Stoffwechselwegen in der Entfernung von Xenobiotika werden einen gezielten Einsatz des biologischen Abbaus ermöglichen

    Die rolle von umweltmikroorganismen beim biologischen abbau von xenobiotika

    Get PDF
    Kao posljedica ubrzane industrijalizacije, modernizacije i porasta broja svjetskog stanovništva, dolazi do povećane emisije ksenobiotika u sve sastavnice okoliša. Ksenobiotici čine mnogobrojnu i raznoliku skupinu kemijskih tvari koje su odgovorne za opsežna onečišćenja okoliša uzrokujući promjene u ekosustavima. Zbog postojanosti i otpornosti u okolišu postoji velika potreba za razgradnjom ovih ksenobiotskih spojeva na ekološki prihvatljiv način. Mikrobne zajednice imaju sposobnost razgradnje širokog raspona spojeva zbog čega je njihova uloga značajna za funkcioniranje ekosustava. Zahvaljujući velikom metaboličkom potencijalu, mikroorganizmi se mogu prilagoditi novim supstratima, pri čemu proizvode enzime odgovorne za razgradnju što može biti učinkovito sredstvo za detoksikaciju okoliša. Temeljitije poznavanje mikroorganizama i bolje razumijevanje metaboličkih puteva pri uklanjanju ksenobiotika omogućit će svrhovitu primjenu biorazgradnje.As a result of accelerated industrialization, modernization, and growth of the world population, there is an increased emission of xenobiotics into all components of the environment. Xenobiotics are a numerous and diverse group of chemical substances that are responsible for extensive environmental pollution and cause changes in ecosystems. Due to their persistence and resistance in the environment, there is a great need for environmentally friendly degradation of these xenobiotic compounds. Microbial communities are capable of degrading a wide range of compounds, which is why they play an important role in the functioning of ecosystems. Thanks to their high metabolic potential, microorganisms can adapt to new substrates and produce enzymes responsible for degradation, which can be an effective means of detoxifying the environment. A thorough knowledge of microorganisms and a better understanding of the metabolic pathways involved in the removal of xenobiotics will allow the ultimate application of biodegradation.Durch beschleunigte Industrialisierung, Modernisierung und das Wachstum der Weltbevölkerung kommt es zu einer erhöhten Freisetzung von Xenobiotika in die Umwelt. Xenobiotika bilden eine zahlreiche und vielfältige Gruppe chemischer Substanzen, die für eine starke Umweltverschmutzung verantwortlich sind und Veränderungen in Ökosystemen verursachen. Aufgrund ihrer hohen Umweltpersistenz und Widerstandsfähigkeit besteht eine große Notwendigkeit, die Xenobiotikaverbindungen umweltverträglich abzubauen. Mikrobielle Gemeinschaften haben die Fähigkeit, eine Vielzahl von Verbindungen abzubauen, weswegen ihre Rolle für das Funktionieren des Ökosystems von Bedeutung ist. Dank des großen metabolischen Potenzials können sich Mikroorganismen an neue Substrate anpassen, wobei sie Enzyme produzieren, die für den Abbau verantwortlich sind, was ein wirksames Mittel zur Umweltentgiftung sein kann. Gründlicheres Wissen über Mikroorganismen und besseres Verständnis von Stoffwechselwegen in der Entfernung von Xenobiotika werden einen gezielten Einsatz des biologischen Abbaus ermöglichen

    Projection of the Amount and Energy Potential of Mixed Municipal Waste in the Republic of Croatia

    Get PDF
    U ovom je radu procijenjen energetski potencijal miješanog komunalnog otpada koji preostaje nakon ispunjavanja propisanih i planiranih ciljeva gospodarenja komunalnim otpadom, nakon obrade u postrojenjima za mehaničko-biološku obradu. Tom obradom proizvodi se kruto gorivo iz otpada ili električna i toplinska energija u slučaju proizvodnje bioplina anaerobnom obradom biorazgradive frakcije otpada. Radi analize, 2026. je pretpostavljena kao godina izgradnje centara za gospodarenje otpadom. Ukupni energetski potencijal koji je moguće iskoristiti oporabom otpada iznosi oko 5,3 PJ, odnosno iznosi oko 3,71 % od količine energije iz sektora ukupne opće potrošnje energije za 2018. godinu. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna.In the Republic of Croatia, municipal waste management is prescribed by legal and other strategic and planning documents that set the goals of waste management, which include separate collection for material recovery, i.e., recycling. The remaining mixed municipal waste needs to be treated before final disposal. This treatment involves the implementation of mechanical-biological and energy recovery, most often the production of fuel from waste of standardised quality or direct production of electricity and heat from biogas produced at cogeneration plants within waste management centres. In accordance with the stated objectives of waste management and their assumed fulfilment, a projection of waste quantities was made. According to the projection, out of the total generated annual amount of municipal waste in 2026 of about 1.54 million tons, about 753,000 t year–1 need to be processed at waste management centres. Mechanical-biological treatment of waste, which for the purposes of this analysis includes mechanical treatment and refining of the fuel fraction and the combined biodegradable fraction of mixed municipal waste in anaerobic and aerobic conditions, it is possible to produce solid fuel from waste in the amount of about 298,000 t year–1 and about 41.7 ∙ 106 Nm3 of biogas. If the same biological treatment of waste is assumed for separately collected biowaste, then an additional annual production of about 26.2 ∙ 106 Nm3 of biogas can be expected. The total energy potential by waste recovery is about 5.3 PJ, or about 3.71 % from the sector of total general energy consumption for 2018. This work is licensed under a Creative Commons Attribution 4.0 International License

    Razvoj procesa kompostiranja biorazgradive frakcije komunalnog otpada u laboratorijskom mjerilu

    Get PDF
    Porast stanovništva i ubrzana industrijalizacija svakodnevno dovode do nastanka velikih količina otpada čije zbrinjavanje predstavlja ekološki i ekonomski problem. Veliki udio otpada na odlagalištima čini biorazgradivi otpad, a kao prihvatljiv način zbrinjavanja takvog otpada smatra se process kompostiranja. Kompostiranje je proces razgradnje organskih tvari pomoću mikroorganizama u aerobnim uvjetima pri čemu kao produkt nastaje kompost, prirodan i koristan dodatak tlu. U ovom radu prikazani su rezultati provedbe procesa kompostiranja biorazgradive frakcije komunalnog otpada u laboratorijskom mjerilu na način da je proveden proces kompostiranja bez i proces kompostiranja s bioaugmentacijom, odnosno uz dodatak mikroorganizama izoliranih tijekom provedbe samog procesa kompostiranja. Tijekom procesa kompostiranja praćene su karakteristične procesne veličine poput C/N omjera, pH-vrijednosti, sadržaja vlage i hlapive tvari, a biorazgradnja je praćena i preko sastava eluate što je omogućilo usporedbu provedenih procesa. Postavljen je i matematički model procesa kompostiranja, a rezultati simulacije matematičkog modela procesa upotrijebljeni su za optimizaciju procesnih uvjeta

    Ružička days : International conference 16th Ružička Days “Today Science – Tomorrow Industry” : Proceedings

    Get PDF
    Proceedings contains articles presented at Conference divided into sections: open lecture (1), chemical analysis and synthesis (3), chemical and biochemical engineering (8), food technology and biotechnology (8), medical chemistry and pharmacy (3), environmental protection (11) and meeting of young chemists (2)

    Bioremediation potential of activated sludge in pharmaceutical wastewater treatment

    No full text
    Tijekom proizvodnje farmaceutskih proizvoda nastaju otpadne vode koje sadrže širok raspon specifičnih onečišćujućih tvari. Primjenom bioremedijacije može se poboljšati proces biološke obrade farmaceutske otpadne vode. U ovom radu istražen je bioremedijacijski potencijal aktivnoga mulja za obradu farmaceutske otpadne vode. Pokusom biosorpcije ispitano je vezanje prisutnih tvari u otpadnoj vodi na staničnu strukturu aktivnoga mulja. Povećanjem početnih koncentracija aktivnoga mulja povećava se specifična površina mulja što omogućava veću sorpciju sorbata. Optimalna početna koncentracija aktivnoga mulja za proces biosorpcije onečišćujućih tvari iz farmaceutske otpadne vode iznosila je 5,12 ± 0,13 g/L. Langmuirov model ukazuje na dobro slaganje s eksperimentalnim podacima pri čemu su se procijenjene vrijednosti qm i KL kretale od 131,43 do 317,29 mg/g te od 0,002 do 0,005 L/mg, dok je vrijednost F-testa iznosila 0,97 ± 0,01. Učinkovitost procesa biosorpcije je u prosjeku iznosila 25,55 ± 10,62 %, dok je prosječna vrijednost uklonjenih toksičnih tvari iznosila 41,14 ± 10,05 % unutar 30 minuta. Iz farmaceutske otpadne vode izolirane su najzastupljenije bakterijske kulture zbog prilagođenosti dostupnom supstratu, Aeromonas hydrophila i Pseudomonas putida, te su one primijenjene za bioaugmentaciju aktivnoga mulja. U pokusima bioaugmentacije provedena je kinetička analiza procesa biorazgradnje pri čemu su se procijenjene vrijednosti μmax i KS kretale od 0,16 do 0,92 1/h te od 53,64 do 238,80 g/L. Vrijednosti procijenjene za Ki i kd iznosile od 120,45 do 186,67 g/L i od 0,0011 do 0,0076 1/h, dok su procijenjene vrijednosti za m i n u prosjeku iznosile 0,0039 ± 0,0012 te 1,20 ± 0,30. Prosječna vrijednost F-testa iznosila je 0,75 ± 0,01. Na temelju vrijednosti procijenjenih parametara modela i ocjene prihvatljivosti modela može se zaključiti da Endo-Haldaneov model dobro opisuje ponašanje sustava u obradi farmaceutske otpadne vode. U pokusu bioaugmentacije prosječna vrijednost pH iznosila je 7,92 ± 0,30, koncentracija otopljenog kisika u prosjeku je iznosila 4,06 ± 1,97 mg/L, dok je omjer Xv/X tijekom cijelog pokusa bio konstantan te je iznosio 0,91 ± 0,03. Najveća učinkovitost biorazgradnje zabilježena je u pokusu s bioaugmentiranim aktivnim muljem s P. putida s prosječnom vrijednošću od 68,78 ± 6,69 %. Iako bioaugmentacija nije utjecala na morfologiju aktivnoga mulja, smanjeno je vrijeme obrade farmaceutske otpadne vode s bioaugmentiranim aktivnim muljem s A. hydrophila i P. putida za vremenski period do 4 i 6 h uz postizanje jednake učinkovitosti procesa i smanjeni prirast biomase između 1,62 % i 4,54 %. Bakterijska kultura P. putida ukazuje na otpornost prema eritromicinu, gdje se krivulja rasta P. putida u sustavu s eritromicinom može se dobro opisati Gompertzovim modelom, uz prosječnu vrijednost F-testa 0,94 ± 0,02. Procijenjene vrijednosti parametara modela kretale su se od 0,17 do 0,25 1/h za μmax, od 0,73 do 0,86 za konstantu b, od 0,0572 do 0,1096 za konstantu c te u rasponu od 0,0017 do 0,0049 1/h za kd. Mikroskopskom analizom utvrđeno je da pri koncentraciji eritromicina od 200 mg/L dolazi do filamentacije stanica, pri čemu su se duljine stanica kretale od 6,86 do 19,57 μm u eksponencijalnoj fazi do 48 sati. Najveća aktivnost od 20308,94 U enzima esteraze postignuta je u 72. satu u sustavu bez eritromicina.During the production of pharmaceutical products, wastewater is generated which contains a wide variety of specific contaminants. The application of bioremediation can improve the process of pharmaceutical wastewater biological treatment. In this study, the bioremediation potential of activated sludge in pharmaceutical wastewater treatment was investigated. The biosorption experiment was conducted to investigate the binding of contaminants from wastewater onto the cellular structure of activated sludge. By increasing the initial concentrations of activated sludge, the specific surface area of the sludge increases, which enables better sorbate sorption. The optimal initial concentration of activated sludge for the biosorption process of contaminants from pharmaceutical wastewater was 5.12 ± 0.13 g/L. Langmuir's model indicated good alignment with the experimental data, where the estimated values of qm and KL ranged from 131.43 to 317.29 mg/g and from 0.002 to 0.005 L/mg, and the value of the F-test was 0.97 ± 0.01. The average value of biosorption process efficiency was 25.55 ± 10.62 %, while the average value of the removed toxic substances was 41.14 ± 10.05 % within 30 minutes. The most common bacterial cultures were isolated from pharmaceutical wastewater due to their adaptation to the available substrate, Aeromonas hydrophila and Pseudomonas putida, and they were used for the bioaugmentation of activated sludge. In bioaugmentation experiments, a kinetic analysis of the biodegradation process was conducted, where the estimated values of μmax and KS ranged from 0.16 to 0.92 1/h and from 53.64 to 238.80 g/L. Values estimated for Ki and kd ranged from 120.45 to 186.67 g/L and from 0.0011 to 0.0076 1/h, while estimated average values for m and n were 0.0039 ± 0.0012 and 1.20 ± 0.30. The mean value of the F-test was 0.75 ± 0.01. Based on the values of the estimated model parameters and the evaluation of the acceptability of the model, it can be concluded that the Endo-Haldane model can well describe the behaviour of the of pharmaceutical wastewater treatment system. In the bioaugmentation experiment, the average pH value was 7.92 ± 0.30, the dissolved oxygen concentration averaged 4.06 ± 1.97 mg/L, while the Xv/X ratio was constant throughout the experiment and was 0,91 ± 0.03. The highest biodegradation efficiency was observed in an experiment with bioaugmented activated sludge with P. putida with an average value of 68.78 ± 6.69%. Although bioaugmentation did not affect the morphology of activated sludge, the time of pharmaceutical wastewater treatment with bioaugmented activated sludge with A. hydrophila and P. putida was reduced for a period of up to 4 and 6 hours with achieving equal process efficiency and reduced biomass growth between 1.62 % and 4.54 %. Bacterial culture P. putida indicates resistance to erythromycin, where the growth curve of P. putida in the system with erythromycin can be well described by the Gompertz model, with an average F-test value of 0.94 ± 0.02. The estimated values of the model parameters ranged from 0.17 to 0.25 1/h for μmax, from 0.73 to 0.86 for the constant b, from 0.0572 to 0.1096 for the constant c, and in the range from 0.0017 to 0.0049 1/h for kd. Microscopic analysis showed that at the erythromycin concentration of 200 mg/L, cell filamentation occurred, with cell lengths ranging from 6.86 to 19.57 μm during the exponential phase up to 48 hours. The highest activity of 20308.94 U for esterase enzyme was achieved at the 72nd hour in the system with no presence of erythromycin
    corecore