7 research outputs found
HIV-1 proteáza: náhled do vývoje virové rezistence
Amino acid changes within HIV protease or its substrate that decrease the susceptibility to protease inhibitors represent a highly complex issue still not yet fully understood. Various mechanisms by which this often complicated pattern of mutations influence drug binding needs to be analyzed on a molecular level by a series of methods including experiments with recombinant viruses, biochemical enzyme analysis, structural and thermodynamical studies or molecular dynamics. Each result may help to complete the overall picture of protease inhibitor resistance evolution and therefore contribute to the design of more powerful 3rd generation HIV/AIDS drugs. This thesis presents several analyses of HIV resistance development on molecular level. We have focused on the nelfinavir resistance pathway, lopinavir mutation score, emergence of amino acid insertions in HIV protease gene and their contribution to protease inhibitor resistance and finally we analyzed a highly mutated protease species isolated from patients failing darunavir therapy. Since we are able to accomplish a wide combination of techniques, we could explain and put together some pieces of viral evolution considering the final steps of HIV life cycle and also provide knowledge necessary for novel inhibitor design. Aims of the Project There were...Aminokyselinové záměny v HIV proteáze či jejím substrátu, které snižují citlivost k proteázovým inhibitorům, představují celkem složitý problém, který není jasně charakterizován. Četné mechanismy, jakými mnohdy velmi komplikovaná skladba mutací ovlivňuje vazbu inhibitoru, musí nutně být analyzovány na molekulární úrovni, a to nejlépe sérií metod, počínaje experimenty s rekombinantními viry, enzymovými esejemi, strukturálními a termodynamickými studiemi či molekulární dynamikou. Každý výsledek pak může pomoci sestavit dohromady jakousi mozaiku evoluce vzniku rezistence k proteázovým inhibitorům, a tím se nepřímo podílet na vývoji ještě účinnějších léků tzv. třetí generace cílených proti HIV/AIDS. Tato dizertační práce představuje několik analýz zabývajících se vznikem rezistence u HIV viru právě na molekulární úrovni. Zaměřili jsme se konkrétně na evoluční dráhu vedoucí k rezistenci k proteázovému inhibitoru nelfinaviru, dále na tzv. lopinavirové mutační skóre, poté na výskyt aminokyselinových inzercí v genu HIV proteázy a jejich vliv na rezistenci k proteázovým inhibitorům a v neposlední řadě jsme analyzovali vysoce mutované varianty HIV proteázy izolované z pacientů, u kterých již nebyla účinná terapie darunavirem. Jelikož jsme byli schopni pracovat s širokou škálou technik, podařilo se nám...Department of BiochemistryKatedra biochemieFaculty of SciencePřírodovědecká fakult
HIV - 1 Protease: Insights into Drug Resistance Development
Amino acid changes within HIV protease or its substrate that decrease the susceptibility to protease inhibitors represent a highly complex issue still not yet fully understood. Various mechanisms by which this often complicated pattern of mutations influence drug binding needs to be analyzed on a molecular level by a series of methods including experiments with recombinant viruses, biochemical enzyme analysis, structural and thermodynamical studies or molecular dynamics. Each result may help to complete the overall picture of protease inhibitor resistance evolution and therefore contribute to the design of more powerful 3rd generation HIV/AIDS drugs. This thesis presents several analyses of HIV resistance development on molecular level. We have focused on the nelfinavir resistance pathway, lopinavir mutation score, emergence of amino acid insertions in HIV protease gene and their contribution to protease inhibitor resistance and finally we analyzed a highly mutated protease species isolated from patients failing darunavir therapy. Since we are able to accomplish a wide combination of techniques, we could explain and put together some pieces of viral evolution considering the final steps of HIV life cycle and also provide knowledge necessary for novel inhibitor design. Aims of the Project There were..
HIV - 1 Protease: Insights into Drug Resistance Development
Amino acid changes within HIV protease or its substrate that decrease the susceptibility to protease inhibitors represent a highly complex issue still not yet fully understood. Various mechanisms by which this often complicated pattern of mutations influence drug binding needs to be analyzed on a molecular level by a series of methods including experiments with recombinant viruses, biochemical enzyme analysis, structural and thermodynamical studies or molecular dynamics. Each result may help to complete the overall picture of protease inhibitor resistance evolution and therefore contribute to the design of more powerful 3rd generation HIV/AIDS drugs. This thesis presents several analyses of HIV resistance development on molecular level. We have focused on the nelfinavir resistance pathway, lopinavir mutation score, emergence of amino acid insertions in HIV protease gene and their contribution to protease inhibitor resistance and finally we analyzed a highly mutated protease species isolated from patients failing darunavir therapy. Since we are able to accomplish a wide combination of techniques, we could explain and put together some pieces of viral evolution considering the final steps of HIV life cycle and also provide knowledge necessary for novel inhibitor design. Aims of the Project There were..
Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma
Proteasome inhibitors are the backbone of multiple myeloma therapy. However, disease progression or early relapse occur due to development of resistance to the therapy. One important cause of resistance to proteasome inhibition is the so-called bounce-back response, a recovery pathway driven by the TCF11/Nrf1 transcription factor, which activates proteasome gene re-synthesis upon impairment of the proteasome function. Thus, inhibiting this recovery pathway potentiates the cytotoxic effect of proteasome inhibitors and could benefit treatment outcomes. DDI2 protease, the 3D structure of which resembles the HIV protease, serves as the key player in TCF11/Nrf1 activation. Previous work found that some HIV protease inhibitors block DDI2 in cell-based experiments. Nelfinavir, an oral anti-HIV drug, inhibits the proteasome and/or pAKT pathway and has shown promise for treatment of relapsed/refractory multiple myeloma. Here, we describe how nelfinavir inhibits the TCF11/Nrf1-driven recovery pathway by a dual mode of action. Nelfinavir decreases the total protein level of TCF11/Nrf1 and inhibits TCF11/Nrf1 proteolytic processing, likely by interfering with the DDI2 protease, and therefore reduces the TCF11/Nrf1 protein level in the nucleus. We propose an overall mechanism that explains nelfinavir’s effectiveness in the treatment of multiple myeloma
Molecular Characterization of Clinical Isolates of Human Immunodeficiency Virus Resistant to the Protease Inhibitor Darunavir ▿ †
Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-associated mutations than viruses resistant to other PIs. In this work, we have enzymologically and structurally characterized a number of highly mutated clinically derived PRs with high levels of phenotypic resistance to darunavir. With 18 to 21 amino acid residue changes, the PR variants studied in this work are the most highly mutated HIV PR species ever studied by means of enzyme kinetics and X-ray crystallography. The recombinant proteins showed major defects in substrate binding, while the substrate turnover was less affected. Remarkably, the overall catalytic efficiency of the recombinant PRs (5% that of the wild-type enzyme) is still sufficient to support polyprotein processing and particle maturation in the corresponding viruses. The X-ray structures of drug-resistant PRs complexed with darunavir suggest that the impaired inhibitor binding could be explained by change in the PR-inhibitor hydrogen bond pattern in the P2′ binding pocket due to a substantial shift of the aminophenyl moiety of the inhibitor. Recombinant virus phenotypic characterization, enzyme kinetics, and X-ray structural analysis thus help to explain darunavir resistance development in HIV-positive patients
Ninety-Nine Is Not Enough: Molecular Characterization of Inhibitor-Resistant Human Immunodeficiency Virus Type 1 Protease Mutants with Insertions in the Flap Region▿ †
While the selection of amino acid insertions in human immunodeficiency virus (HIV) reverse transcriptase (RT) is a known mechanism of resistance against RT inhibitors, very few reports on the selection of insertions in the protease (PR) coding region have been published. It is still unclear whether these insertions impact protease inhibitor (PI) resistance and/or viral replication capacity. We show that the prevalence of insertions, especially between amino acids 30 to 41 of HIV type 1 (HIV-1) PR, has increased in recent years. We identified amino acid insertions at positions 33 and 35 of the PR of HIV-1-infected patients who had undergone prolonged treatment with PIs, and we characterized the contribution of these insertions to viral resistance. We prepared the corresponding mutated, recombinant PR variants with or without insertions at positions 33 and 35 and characterized them in terms of enzyme kinetics and crystal structures. We also engineered the corresponding recombinant viruses and analyzed the PR susceptibility and replication capacity by recombinant virus assay. Both in vitro methods confirmed that the amino acid insertions at positions 33 and 35 contribute to the viral resistance to most of the tested PIs. The structural analysis revealed local structural rearrangements in the flap region and in the substrate binding pockets. The enlargement of the PR substrate binding site together with impaired flap dynamics could account for the weaker inhibitor binding by the insertion mutants. Amino acid insertions in the vicinity of the binding cleft therefore represent a novel mechanism of HIV resistance development