15 research outputs found

    Producing Hydrogen Gas from Organic Wastes Released by Agricultural Activities

    No full text

    A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism

    No full text
    © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Sensitive and selective detection of nitroaromatic explosives is an important issue in regard to human health, environment, public security and military issues. In this study, a simple and sensitive fluorescence quenching − based assay utilizing Rhodamine 110 as fluorophore probe was developed for the determination of trinitrotoluene (TNT). This sensitive fluorometric method could measure the decrease in fluorescence of Rhodamine 110 (λex = 490 nm, λem = 521 nm) owing to the primary amine groups of Rhodamine 110 (different from other rhodamines) capable of donor-acceptor interaction with TNT. The resulting TNT-amine complex can strongly quench the fluorescence emission of Rhodamine 110 by fluorescence resonance energy transfer (FRET) which occurs as the excited Rhodamine 110 fluorophore (donor) transfers its energy to TNT (acceptor) by non-radiative dipole-dipole interaction. Fluorescence quenching varied linearly with TNT concentration, with LOD and the LOQ of 0.71 and 2.38 mg L− 1 TNT, respectively. Similar explosives, common soil ions, and possible camouflage materials were found not to interfere with the proposed method, offering significant advantages with its easy methodology, low-cost, sensitivity, and rapidity of analysis. Graphical Abstract: FRET mechanism based on dye donor-TNT acceptor interaction. [Figure not available: see fulltext.

    Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots

    No full text
    © 2022 Elsevier B.V.In recent years, the determination of 2,4,6-trinitrotoluene (TNT) explosive residues in various matrices has attracted great interest from the perspective of national security and public health. Here, a fluorescent polyethylenimine capped carbon quantum dots (PEI-C-dots) probe was synthesized by a microwave-assisted technique using polyethylenimine and citric acid precursors and used to detect TNT. The sensing mechanism of TNT is based on fluorescence quenching as a result of the donor–acceptor interaction between Meisenheimer anion form of TNT and PEI on the PEI-C-dots surface. The fluorescence quantum yield of the synthesized PEI-C-dots was 54% and the detection limit for TNT was 93 μg/L. It was observed that neither the nitramine group (HMX and RDX) explosives with similar structures nor common soil ions and camouflage agents interfered with the determination of TNT. The interference effect of picric acid was eliminated by removing it with a basic anion exchanger before the determination. This nanosensor allows rapid, simple, selective, and sensitive determination of TNT residues in complex matrices and has the potential to be converted into a kit format
    corecore