5 research outputs found

    Matrix Product Representation of Locality Preserving Unitaries

    Get PDF
    The matrix product representation provides a useful formalism to study not only entangled states, but also entangled operators in one dimension. In this paper, we focus on unitary transformations and show that matrix product operators that are unitary provides a necessary and sufficient representation of 1D unitaries that preserve locality. That is, we show that matrix product operators that are unitary are guaranteed to preserve locality by mapping local operators to local operators while at the same time all locality preserving unitaries can be represented in a matrix product way. Moreover, we show that the matrix product representation gives a straight-forward way to extract the GNVW index defined in Ref.\cite{Gross2012} for classifying 1D locality preserving unitaries. The key to our discussion is a set of `fixed point' conditions which characterize the form of the matrix product unitary operators after blocking sites. Finally, we show that if the unitary condition is relaxed and only required for certain system sizes, the matrix product operator formalism allows more possibilities than locality preserving unitaries. In particular, we give an example of a simple matrix product operator which is unitary only for odd system sizes, does not preserve locality and carries a `fractional' index as compared to their locality preserving counterparts.Comment: 14 page

    Boson condensation and instability in the tensor network representation of string-net states

    Get PDF
    The tensor network representation of many-body quantum states, given by local tensors, provides a promising numerical tool for the study of strongly correlated topological phases in two dimension. However, tensor network representations may be vulnerable to instabilities caused by small perturbations of the local tensor, especially when the local tensor is not injective. For example, the topological order in tensor network representations of the toric code ground state has been shown to be unstable under certain small variations of the local tensor, if these small variations do not obey a local Z2Z_2 symmetry of the tensor. In this paper, we ask the questions of whether other types of topological orders suffer from similar kinds of instability and if so, what is the underlying physical mechanism and whether we can protect the order by enforcing certain symmetries on the tensor. We answer these questions by showing that the tensor network representation of all string-net models are indeed unstable, but the matrix product operator (MPO) symmetries of the local tensor can help to protect the order. We find that, `stand-alone' variations that break the MPO symmetries lead to instability because they induce the condensation of bosonic quasi-particles and destroy the topological order in the system. Therefore, such variations must be forbidden for the encoded topological order to be reliably extracted from the local tensor. On the other hand, if a tensor network based variational algorithm is used to simulate the phase transition due to boson condensation, then such variation directions must be allowed in order to access the continuous phase transition process correctly.Comment: 44 pages, 85 figures, comments welcom

    Quantum Error Correcting Codes in Eigenstates of Translation-Invariant Spin Chains

    Get PDF
    Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems with topological order turned out to give a natural physical realization of quantum error correcting codes (QECC) in their ground spaces. More recently, in the context of the anti-de Sitter/conformal field theory correspondence, it has been argued that eigenstates of CFTs with a holographic dual should also form QECCs. These two examples raise the question of how generally eigenstates of many-body models form quantum codes. In this Letter we establish new connections between quantum chaos and translation invariance in many-body spin systems, on one hand, and approximate quantum error correcting codes (AQECC), on the other hand. We first observe that quantum chaotic systems obeying the eigenstate thermalization hypothesis have eigenstates forming approximate quantum error-correcting codes. Then we show that AQECC can be obtained probabilistically from translation-invariant energy eigenstates of every translation-invariant spin chain, including integrable models. Applying this result to 1D classical systems, we describe a method for using local symmetries to construct parent Hamiltonians that embed these codes into the low-energy subspace of gapless 1D quantum spin chains. As explicit examples we obtain local AQECC in the ground space of the 1D ferromagnetic Heisenberg model and the Motzkin spin chain model with periodic boundary conditions, thereby yielding nonstabilizer codes in the ground space and low energy subspace of physically plausible 1D gapless models
    corecore