4 research outputs found

    Extreme Concentrations of Nitric Oxide Control Daytime Oxidation and Quench Nocturnal Oxidation Chemistry in Delhi during Highly Polluted Episodes

    Get PDF
    Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period

    Mass size distribution and source identification of particulate matter metal components at four urban sites and a background site of Istanbul

    No full text
    In this study, the size distribution characteristics and metal contents of particulate matter (PM) have been determined. In this scope, PM sampling has been done at five stations in Istanbul. PM filter samples were collected for eight different sizes using the Anderson cascade impactor. PM filters were decomposed and analyzed for 20 metals. The highest median concentration for Fe, Ca, K, and Mg, known as soil metals, were observed as follows: Fe and Ca were observed at Goztepe station (1.20 and 8.28 mu g/m(3)), K was observed at Kilyos station (0.33 mu g/m(3)), and Mg was observed at Avcilar station (0.37 mu g/m(3)). The highest median concentrations for Zn, Cu, Pb, Ni, Cr, V, As, Se, Co, and Cd, known as anthropogenic metals, were observed at Avcilar, Goztepe, and Besiktas stations. Although the lowest metal concentrations was determined at Kilyos stations that was selected as the urban background. The enrichment factors (EFs) of most metals in the fine PM is higher than those in the coarse mode. According to the factor analyses, the most important emission source was observed to be industrial facilities at Avcilar; traffic at Besiktas; traffic and domestic heating at Goztepe; and domestic heating, sea salt aerosols, and ship traffic (in the Bosphorus Channel of Istanbul) at Rasathane
    corecore