16 research outputs found

    Raman imaging as a new approach to identification of the mayenite group minerals

    Get PDF
    The mayenite group includes minerals with common formula Ca12Al14O32−x(OH)3x[W6−3x], where W = F, Cl, OH, H2O and x = 0–2. This distinction in the composition is associated with W site which may remain unoccupied or be occupied by negatively charged ions: OH−, F−, Cl−, as well as neutral molecules like H2O. However, there is no experimental approach to easily detect or differentiate mineral species within the mayenite group. Electron micro-beam facilities with energy- or wavelength-dispersive X-ray detectors, as most common tools in mineralogy, appear to be insufficient and do not provide a definite identification, especially, of hydroxylated or hydrated phases. Some solution provides typical Raman analysis ensuring identification of minerals and 3D Raman imaging as an innovative approach to distinguish various co-existing minerals of the mayenite group within a small area of the rock sample. Raman spectroscopy has also been successfully used for a determination of water type incorporated into the mineral structure as well as for a spatial distribution of phases by cluster approach analysis and/or integrated intensity analysis of bands in the hydroxyl region. In this study, Raman technique was for the first time used to reconstruct a 3D model of mayenite group mineral zonation, as well as to determine a way of water incorporation in the structure of these minerals. Moreover, for the first time, Raman data were correlated with alterations during the mineral-forming processes and used for reconstruction of the thermal history of studied rock. As a result, the influence of combustion gases has been proposed as a crucial factor responsible for the transformation between fluormayenite and fluorkyuygenite

    The Properties of Black Locust Robinia pseudoacacia L. to Selectively Accumulate Chemical Elements from Soils of Ecologically Transformed Areas

    Get PDF
    The black locust Robinia pseudoacacia L. is a common species that originated from North America. In Europe, it is an invasive and introduced plant. Due to its low habitat requirements and ecological plasticity, this species colonizes new anthropogenically transformed areas quickly. This study investigated the chemical composition of selected tissues of Robinia pseudoacacia L. in five various habitats with different levels of anthropopression conditions in southern Poland. The presented research aimed to compare the chemical composition of black locust parts tissues (leaves, branches, and seeds) and the soil under its canopy. To determine the heavy metal contamination and enrichment in soil, the geoaccumulation index, enrichment factor, contamination factor, pollution load index, and potential ecological risk index were calculated. The results showed that all examined soils are considerably or very highly contaminated and the main heavy metals, which pollute the studied samples, are cadmium (1.3–3.91 ppm), lead (78.17–157.99 ppm), and zinc (129.77–543.97 ppm). Conducted research indicates that R. pseudoacacia leaves are the primary carrier of potentially toxic elements. Due to low bioaccumulation factor (BAF) values, it is clear that black locusts do not accumulate contaminants in such amounts that it would pose risk to its use in degraded area reclamation. The obtained results showed that R. pseudoacacia is able to grow in a wide range of habitats and could be applied for greening urban habitats and disturbed ecosystems caused by industry

    Second occurrence of the new mineral harmunite CaFe2O4, Negev Desert, Israel.

    Get PDF
    Harmunite (ideally CaFe2O4) was found in the natural environment for the first time in 2014 in pyrometamorpic larnite rocks of the Hatrurim Complex that lies near Jabel Harmun – moutain located in Judean Desert, Israel - from which it derives its name (Galuskina et al. 2014). Macroscopically, together with srebrodolskite and magnesioferrite, harmunite creates black porous aggregates (Galuskina et al. 2014). In reflected light with crossed polars it has light gray colour with characteristic red internal reflections (Galuskina et al. 2014). Harmunite occurs as crystal faceted by the simple forms {100}, {110}, {210}, {011}, {001}, and {010} or as rounded fragments (Galuskina et al. 2014). The structure of CaFe2O4 consist of double rutile-type ∞1[Fe2O6] chains, which are further linked by common oxygen corners creating a tunnel-structure with large trigonal prismatic cavities occupied by Ca along [001] (Galuskina et al. 2014). Synthetic compound CaFe2O4 is known and used as ceramic material and pigment, semiconductors, refractories, thermally stable material and others (Candeia et al. 2004, Kharton et al. 2008). This phase was also previously found in the Salair pyrometamorphic complex of Kuznetsky coal basin in south – west Siberia, Russia (Nigmatulina & Nigmatulina 2009) and Chelabynsk coal basin, Southern Urals, Russia (Chesnokov et al, 1998) and described as “aciculite”, but it was not approved as a mineral due to its anthropogenic origin (Galuskina et al. 2014). We found harmunite in pyrometamorphic gehlenite rocks of the Hatrurim Complex located in north – east part of Negev Desert, Israel. As for the holotype specimen, it forms aggregates with srebrodolskite and Mg – ferrite. Single grains of harmunite from Negev reach about 25 μm in size. In comparison with holotype specimen, this harmunite contains more varied substitution at octahedral site , where Fe3+ is substituted by Cu, Ni or Zn. Futhermore, there is no Al, which was noted in holotype harmunite. The Raman spectrum of harmunite from Negev is similar to spectrum of holotype specimen and of the synthetic analog. The main Raman bands of harmunite from Negev are as follows (cm–1): 1241, 648, 601, 526, 439, 376, 301, 277, 214, 166, 131, 91

    9th Geosymposium of Young Researches 'Silesia 2016' Kroczyce, 31.08-2.09.2016 r.

    Get PDF
    W dniach 31 sierpnia-2 września 2016 r. odbyła się konferencja naukowa 9th Geosymposium of Young Researches „Silesia 2016” dedykowana młodym naukowcom prowadzącym badania z zakresu szeroko pojętych nauk o Ziemi. Organizatorem spotkań, które od 2015 r. mają status konferencji naukowej o charakterze międzynarodowym, jest Koło Naukowe Doktorantów Wydziału Nauk o Ziemi Uniwersytetu Śląskiego. Młodzi naukowcy z 11 państw spotkali się w Kroczycach na Wyżynie Krakowsko- Częstochowskiej. Podczas sesji tematycznych poruszano zagadnienia m.in. z zakresu geografii fizycznej, kartografii, teledetekcji, systemów informacji geograficznej, ochrony środowiska, ekologii krajobrazu oraz badań polarnych[...

    Chemical and Phase Reactions on the Contact between Refractory Materials and Slags, a Case from the 19th Century Zn-Pb Smelter in Ruda S´ la˛ska, Poland

    Get PDF
    Slags from the historic metallurgy of Zn-Pb ores are known for unique chemical and phase compositions. The oxides, silicates, aluminosilicates, and amorphous phases present therein often contain in the structure elements that are rare in natural conditions, such as Zn, Pb, As. The study focuses on processes occurring on the contact of the melted batch and the refractory materials that build the furnace, which lead to the formation of these phases. To describe them, chemical (X-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS)) and petrological ((X-ray di raction (XRD), electron probe micro-analyses (EPMA), Raman spectroscopy) analyses were performed on refractory material, slag, and contact of both. Two main types of reactions have been distinguished: gas/fluid- refractories and liquid- refractories. The first of them enrich the refractories with elements that migrate with the gas (Pb, K, Na, As, Zn) and transport the components building it (Fe, Mg, Ca) inward. Reactions between melted batch and refractory materials through gravitational di erentiation and the melting of refractories lead to the formation of an aluminosilicate liquid with a high content of heavy elements. Cooling of this melt causes crystallization of minerals characteristic for slag, but with a modified composition, such as Fe-rich pyroxenes, Pb-rich K-feldspar, or PbO-As2O3-SiO2 glass

    Pb-Rich Slags, Minerals, and Pollution Resulted from a Medieval Ag-Pb Smelting and Mining Operation in the Silesian-Cracovian Region (Southern Poland)

    Get PDF
    Since the 12th century in the Silesian-Cracovian area, lead, litharge, and silver have been produced by the pyrometallurgical processing of Pb-Ag-Zn ore. Slags and soils contaminated with heavy metals (Zn, Pb, Cd, Fe, Mn, As) were the subject of this research. Samples were collected during archaeological works in the area of early medieval metallurgical settlement. The main goals of the analyses (Scanning Electron Miscroscopy-Energy Dispersive Spectroscopy (SEM-EDS), Electron Probe Microanalyzer (EPMA), X-ray di raction (XRD), Atomic Absorption Spectroscopy (AAS)) were the determination of the mineralogical composition of furnace batches and smelting temperatures and conditions. In soils, the anthropogenic phases enriched in Pb, Zn, Fe, Mn, P, and primary minerals like goethite, ferrihydrite, sphalerite, galena, smithsonite, minrecordite, cerussite, gypsum, anglesite, jarosite, and hemimorphite were identified. The soil from former metallurgical settlements contained up to 1106 mg kg1 Pb, 782 mg kg1 Zn, 4.7 mg kg1 Cd in the fine fraction. Much higher heavy metal concentrations were observed in the waste products of ore rinsing, up to 49,282 mg kg1 Pb, 64,408 mg kg1 Zn, and 287 mg kg1 Cd. The medieval smelting industry and Pb-Ag-Zn ore processing are marked by highly anomalous geochemical pollution (Pb, Zn, Cd, Fe, Mn, Ba) in the topsoil. The methods of mineralogical investigation, such as SEM-EDS or EMPA, can be used to identify mineralogical phases formed during metallurgical processes or ore processing. Based on these methods, the characteristic primary assemblage and synthetic phases were identified in the area polluted by medieval metallurgy and mining of Pb-Ag-Zn ores, including MVT (Mississippi Valley Type) deposits. The minerals distinguished in slags and the structural features of metal-bearing aggregates allow us to conclude that batches have included mostly oxidised minerals (PbCO3, ZnCO3, CaZn(CO3)2, FeOOH), sulfides (PbS and ZnS) and quartz (SiO2). The laboratory experiment of high-temperature heating of the examined slags showed that smelting temperatures used in the second half of 13th century were very high and could have reached up to 1550 C. The results indicate, that geochemical and mineralogical methods can be used to obtain important information from archaeological sites, even after archaeological work has long ceased

    Chlorellestadite, Ca5(SiO4)1.5(SO4)1.5Cl, a new ellestadite- group mineral from the Shadil-Khokh volcano, South Ossetia

    Get PDF
    Acknowledgements This work was supported by grant no. 2015/17/N/ ST10/03141 (D. Ś.) from the National Science Centre (NCN) of Poland. Professor Pádhraig S. Kennan of University College at Dublin, Ireland, kindly helped with the English language. The authors are grateful to referee Professor S. Mills and Editor-in-Chief Dr. M.A.T.M. Broekmans for their constructive remarks, which greatly improved the original manuscript.Chlorellestadite (IMA2017–013), ideally Ca5(SiO4)1.5(SO4)1.5Cl, the Cl-end member of the ellestadite group was discovered in a calcium-silicate xenolith in rhyodacite lava from the Shadil Khokh volcano, Greater Caucasus, South Ossetia. Chlorellestadite forms white, tinged with blue or green, elongate crystals up to 0.2–0.3 mm in length. Associated minerals include spurrite, larnite, chlormayenite, rondorfite, srebrodolskite, jasmundite and oldhamite. The empirical crystal chemical formula of the holotype specimen is Ca4.99Na0.01(SiO4)1.51(SO4)1.46(PO4)0.03(Cl0.61OH0.21F0.11)Σ0.93. Unit-cell parameters of chlorellestadite are: P63/m, a = 9.6002(2), c = 6.8692(2) Å, V = 548.27(3)Å3, Z = 2. Chlorellestadite has a Mohs hardness of 4–4.5 and a calculated density of 3.091 g/cm3. The cleavage is indistinct, and the mineral shows irregular fracture. The Raman spectrum of chlorellestadite is similar to the spectra of other ellestadite group minerals, with main bands located at 267 cm−1 (Ca–O vibrations), and between 471 and 630 cm−1 (SiO4 4− and SO4 2− bending vibrations) and 850–1150 cm−1 (SiO4 4− and SO4 2− stretching modes). Chlorellestadite forms in xenoliths of calcium-silicate composition when they are exposed to Cl-bearing volcanic exhalations at about 1000 °C under low pressure conditions.NC

    Comparative actualistic study hints at origins of alleged Miocene coprolites of Poland

    Get PDF
    Excrement-shaped ferruginous masses have been recovered from the Miocene of Turów mine in south-western Poland. These siderite masses have been the subject of much controversy, having been interpreted either as being coprolites, cololithes or pseudofossils created by mechanical deformation of plastic sediment. Here we present the results of mineralogical, geochemical, petrographic and microtomographical analyses. Our data indicate that these masses consist of siderite and iron oxide rather than phosphate, and rarely contain recognizable food residues, which may suggest abiotic origins of these structures. On the other hand, evidence in support of a fecal origin include: (i) the presence of two distinct morphotypes differing in size and shape, (ii) the presence of rare hair-like structures or coalified inclusions and (iii) the presence of rare fine striations on the surface. Importantly, comparative actualistic study of recent vertebrate feces shows overall resemblance of the first morphotype (sausage-shaped with rare coalified debris) to excrements of testudinoid turtles (Testudinoidea), whose shell fragment was found in the investigated locality. The second morphotype (rounded to oval-shaped with hair-like structures), in turn, is similar to the feces of some snakes (Serpentes), the remains of which were noted in the Miocene of the neighborhood areas. Other potential producers (such as lizards and crocodiles) and even abiotic origins cannot be fully excluded but are less likely

    Comparative actualistic study hints at origins of alleged Miocene coprolites of Poland

    Full text link
    Excrement-shaped ferruginous masses have been recovered from the Miocene of Turów mine in south-western Poland. These siderite masses have been the subject of much controversy, having been interpreted either as being coprolites, cololithes or pseudofossils created by mechanical deformation of plastic sediment. Here we present the results of mineralogical, geochemical, petrographic and microtomographical analyses. Our data indicate that these masses consist of siderite and iron oxide rather than phosphate, and rarely contain recognizable food residues, which may suggest abiotic origins of these structures. On the other hand, evidence in support of a fecal origin include: (i) the presence of two distinct morphotypes differing in size and shape, (ii) the presence of rare hair-like structures or coalified inclusions and (iii) the presence of rare fine striations on the surface. Importantly, comparative actualistic study of recent vertebrate feces shows overall resemblance of the first morphotype (sausage-shaped with rare coalified debris) to excrements of testudinoid turtles (Testudinoidea), whose shell fragment was found in the investigated locality. The second morphotype (rounded to oval-shaped with hair-like structures), in turn, is similar to the feces of some snakes (Serpentes), the remains of which were noted in the Miocene of the neighborhood areas. Other potential producers (such as lizards and crocodiles) and even abiotic origins cannot be fully excluded but are less likely

    Comparative actualistic study hints at origins of alleged Miocene “coprolites” of Poland (supplementary movie : Tomographic animation of Miocene coprolite from Turów.avi)

    Get PDF
    Excrement-shaped siderite masseshave been the subject of much controversy. They have been variously interpreted either as being coprolites, cololithes or pseudofossils created by mechanical deformation of plastic sediment. Here we reportexcrement-shaped ferruginous masses recovered from the Miocene of Turów mine in south-western Poland. Results of mineralogical, geochemical, petrographic and microtomographical analyses indicate that these masses consist of siderite and iron oxide rather than phosphate, and rarely contain recognizable food residues, which may suggest abiotic origins of these structures. On the other hand, evidence in support of a fecal origin include: (i) the presence of two distinct morphotypes differing in size and shape, (ii) the limited quantity of specimens, (iii) the presence of rare hair-like structures or coalified inclusions and (iv) the presence of rare fine striations on the surface. Importantly, comparative actualistic study of Recent vertebrate feces shows overall resemblance of the first morphotype (sausage-shaped with rare coalified debris) to excrements of testudinoid turtles (Testudinoidea), whose shell fragment was found in the investigated locality. The second morphotype (rounded to oval-shaped with hair-like structures), in turn, is similar to the feces of some snakes (Serpentes), the remains of which were noted in the Miocene of the neighborhood areas.This research Project is partially supported by the National Science Centre, Poland (www.ncn.gov.pl), Grant No. 2019/32/C/NZ4/00150
    corecore