15 research outputs found

    Protein composition and functioning of yellow lupine (Lupinus luteus L.) embryo axis mitochondria under salinity

    No full text
    Wydzia艂 Biologii: Instytut Biologii EksperymentalnejCelem pracy by艂o wykazanie, czy zasolenie prowadzi do zmian w sk艂adzie bia艂kowym mitochondri贸w oraz sprawdzenie, czy warunki zasolenia mog膮 prowadzi膰 do programowanej 艣mierci kom贸rki (PCD). Analizy przeprowadzone na izolowanych osiach zarodkowych 艂ubinu 偶贸艂tego Lupinus luteus hodowanych in vitro na po偶ywkach z r贸偶nymi st臋偶eniami NaCl wykaza艂y zmiany w metabolizmie mitochondri贸w jak r贸wnie偶 ca艂ego organu. W warunkach zasolenia zmianie uleg艂 poziom bia艂ek mitochondrialnych analizowany metod膮 elektroforezy dwukierunkowej. Spo艣r贸d bia艂ek, kt贸rych poziom zmieni艂 si臋 (wzr贸s艂 lub obni偶y艂 si臋) pod wp艂ywem zasolenia, 48 wytypowano do identyfikacji z zastosowaniem spektrometrii mas. W艣r贸d zidentyfikowanych bia艂ek znalaz艂y si臋 enzymy cyklu Krebsa, mitochondrialnego 艂a艅cucha transportu elektron贸w oraz uczestnicz膮ce w biogenezie mitochondri贸w i bia艂ka stresowe. Zasolenie prowadzi艂o do warunk贸w stresu oksydacyjnego (wzrost poziomu H2O2 i peroksydacji lipid贸w), jednak aktywno艣膰 mitochondrialnych enzym贸w antyoksydacyjnych uleg艂a obni偶eniu. Analiza ultrastruktury wykaza艂a szereg zmian w strukturze kom贸rki obejmuj膮cych deformacje retikulum endoplazmatycznego, zwi臋kszenie stopnia wakuolizacji kom贸rki oraz degradacj臋 chromatyny w j膮drze kom贸rkowym. Pod wp艂ywem zasolenia pojawia艂y si臋 symptomy PCD w postaci uszkodze艅 DNA (elektroforeza kometkowa) oraz fragmentacji DNA.The aim of this study was to demonstrate whether salinity leads to changes in mitochondria protein composition and to verify whether the conditions of salinity can lead to programmed cell death (PCD). The analysis conducted on isolated embryonic axes of yellow lupine, Lupinus luteus grown in vitro on media with different concentrations of NaCl showed changes in the metabolism of mitochondria as well as the entire organ. Changes in the level of mitochondrial proteins under salinity condition were analyzed using two-dimension electrophoresis. Among the proteins which levels changed (increased or decreased) due to salinity, 48 were selected for identification using mass spectrometry. Among the identified proteins were enzymes of the Krebs cycle, mitochondrial electron transport chain and participating in the biogenesis of mitochondria and stress response. Salinity led to conditions of oxidative stress (increasing levels of H2O2 and lipid peroxidation), but the activity of mitochondrial antioxidant enzymes decreased. Analysis of ultrastructure revealed a number of changes in the structure of cell including deformation the endoplasmic reticulum, increased cytoplasmic vacuolisation and degradation of chromatin in the nucleus. Salinity-induced changes led to the emergence of symptoms of PCD in the form of DNA damage (comet assay) and DNA fragmentation

    Protein composition and functioning of yellow lupine (Lupinus luteus L.) embryo axis mitochondria under salinity

    No full text
    Wydzia艂 Biologii: Instytut Biologii EksperymentalnejCelem pracy by艂o wykazanie, czy zasolenie prowadzi do zmian w sk艂adzie bia艂kowym mitochondri贸w oraz sprawdzenie, czy warunki zasolenia mog膮 prowadzi膰 do programowanej 艣mierci kom贸rki (PCD). Analizy przeprowadzone na izolowanych osiach zarodkowych 艂ubinu 偶贸艂tego Lupinus luteus hodowanych in vitro na po偶ywkach z r贸偶nymi st臋偶eniami NaCl wykaza艂y zmiany w metabolizmie mitochondri贸w jak r贸wnie偶 ca艂ego organu. W warunkach zasolenia zmianie uleg艂 poziom bia艂ek mitochondrialnych analizowany metod膮 elektroforezy dwukierunkowej. Spo艣r贸d bia艂ek, kt贸rych poziom zmieni艂 si臋 (wzr贸s艂 lub obni偶y艂 si臋) pod wp艂ywem zasolenia, 48 wytypowano do identyfikacji z zastosowaniem spektrometrii mas. W艣r贸d zidentyfikowanych bia艂ek znalaz艂y si臋 enzymy cyklu Krebsa, mitochondrialnego 艂a艅cucha transportu elektron贸w oraz uczestnicz膮ce w biogenezie mitochondri贸w i bia艂ka stresowe. Zasolenie prowadzi艂o do warunk贸w stresu oksydacyjnego (wzrost poziomu H2O2 i peroksydacji lipid贸w), jednak aktywno艣膰 mitochondrialnych enzym贸w antyoksydacyjnych uleg艂a obni偶eniu. Analiza ultrastruktury wykaza艂a szereg zmian w strukturze kom贸rki obejmuj膮cych deformacje retikulum endoplazmatycznego, zwi臋kszenie stopnia wakuolizacji kom贸rki oraz degradacj臋 chromatyny w j膮drze kom贸rkowym. Pod wp艂ywem zasolenia pojawia艂y si臋 symptomy PCD w postaci uszkodze艅 DNA (elektroforeza kometkowa) oraz fragmentacji DNA.The aim of this study was to demonstrate whether salinity leads to changes in mitochondria protein composition and to verify whether the conditions of salinity can lead to programmed cell death (PCD). The analysis conducted on isolated embryonic axes of yellow lupine, Lupinus luteus grown in vitro on media with different concentrations of NaCl showed changes in the metabolism of mitochondria as well as the entire organ. Changes in the level of mitochondrial proteins under salinity condition were analyzed using two-dimension electrophoresis. Among the proteins which levels changed (increased or decreased) due to salinity, 48 were selected for identification using mass spectrometry. Among the identified proteins were enzymes of the Krebs cycle, mitochondrial electron transport chain and participating in the biogenesis of mitochondria and stress response. Salinity led to conditions of oxidative stress (increasing levels of H2O2 and lipid peroxidation), but the activity of mitochondrial antioxidant enzymes decreased. Analysis of ultrastructure revealed a number of changes in the structure of cell including deformation the endoplasmic reticulum, increased cytoplasmic vacuolisation and degradation of chromatin in the nucleus. Salinity-induced changes led to the emergence of symptoms of PCD in the form of DNA damage (comet assay) and DNA fragmentation

    Evolution of antioxidative systems

    No full text
    呕ycie na Ziemi rozwija艂o si臋 w drodze ewolucji przez oko艂o 3,5 miliarda lat. Procesowi temu towarzyszy艂y zmiany sk艂adu atmosfery, w tym zmiany zawarto艣ci tlenu. Pierwotne organizmy rozwin臋艂y si臋 w warunkach, kiedy zawarto艣膰 tlenu w atmosferze oscylowa艂a wok贸艂 poziomu 0,02%. Nabycie przez organizmy zdolno艣ci do pozyskiwania energii na drodze reakcji fotosyntezy i katalizowania rozszczepienia cz膮steczki wody z wykorzystaniem energii s艂onecznej zapocz膮tkowa艂o stopniowe zwi臋kszenie si臋 zawarto艣ci tlenu w atmosferze i umo偶liwi艂o wykszta艂cenie metabolizmu tlenowego. Wzrastaj膮ca zawarto艣膰 tlenu, ze wzgl臋du na jego w艂a艣ciwo艣ci utleniaj膮ce, by艂a toksyczna dla 贸wcze艣nie 偶yj膮cych organizm贸w. Sta艂o si臋 to przyczyn膮 promowania w toku ewolucji rozwoju wczesnych mechanizm贸w antyoksydacyjnych oraz wykszta艂cenia nowych sprawniejszych uk艂ad贸w maj膮cych na celu usuwanie nadmiaru niebezpiecznych reaktywnych form tlenu. Przez lata organizmy naby艂y zdolno艣膰 do regulowania ilo艣ci powstaj膮cych reaktywnych form tlenu oraz wykorzystywania ich obecno艣ci w procesach sygnalizacji i przekazywania informacji.Life on Earth had evolved about 3.5 billion years ago. Evolutionary processes were accompanied by changes in the composition of the atmosphere, including changes in oxygen level. Primitive organisms have evolved in an environment in which the atmospheric oxygen content was fluctuating around 0.02%. These organisms, after having acquired the ability to generate energy through the process of photosynthesis and to catalyze splitting of water using solar energy, gave rise to gradual increase of the oxygen level in the atmosphere and provided a basis for the evolution of aerobic metabolism. The increased oxygen level, due to its oxidizing properties, appeared toxic to living organisms. This led to the development of early antioxidant mechanisms and their further evolution to more efficient systems for removal of dangerous reactive oxygen species. In the course of the evolution, organisms have acquired ability to control the amount of generated reactive oxygen species and to use them in signaling processes and transduction of information

    Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Brassica napus Seeds under Salt Stress

    Get PDF
    Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation

    Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review

    No full text
    Abiotic stresses are the major environmental factors that play a significant role in decreasing plant yield and production potential by influencing physiological, biochemical, and molecular processes. Abiotic stresses and global population growth have prompted scientists to use beneficial strategies to ensure food security. The use of organic compounds to improve tolerance to abiotic stresses has been considered for many years. For example, the application of potential external osmotic protective compounds such as proline is one of the approaches to counteract the adverse effects of abiotic stresses on plants. Proline level increases in plants in response to environmental stress. Proline accumulation is not just a signal of tension. Rather, according to research discussed in this article, this biomolecule improves plant resistance to abiotic stress by rising photosynthesis, enzymatic and non-enzymatic antioxidant activity, regulating osmolyte concentration, and sodium and potassium homeostasis. In this review, we discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues. Further, the impacts of exogenous proline utilization under various non-living stresses such as drought, salinity, high and low temperatures, and heavy metals have been extensively studied. Numerous various studies have shown that exogenous proline can improve plant growth, yield, and stress tolerance under adverse environmental factors

    New Insight on Water Status in Germinating <i>Brassica napus</i> Seeds in Relation to Priming-Improved Germination

    Get PDF
    Seed priming is a pre-sowing method successfully used to improve seed germination. Since water plays a crucial role in germination, the aim of this study was to investigate the relationship between better germination performances of osmoprimed Brassica napus seeds and seed water status during germination. To achieve this goal, a combination of different kinds of approaches was used, including nuclear magnetic resonance (NMR) spectroscopy, TEM, and SEM as well as semi-quantitative PCR (semi-qPCR). The results of this study showed that osmopriming enhanced the kinetics of water uptake and the total amount of absorbed water during both the early imbibition stage and in the later phases of seed germination. The spin&#8315;spin relaxation time (T2) measurement suggests that osmopriming causes faster water penetration into the seed and more efficient tissue hydration. Moreover, factors potentially affecting water relations in germinating primed seeds were also identified. It was shown that osmopriming (i) changes the microstructural features of the seed coat, e.g., leads to the formation of microcracks, (ii) alters the internal structure of the seed by the induction of additional void spaces in the seed, (iii) increases cotyledons cells vacuolization, and (iv) modifies the expression pattern of aquaporin genes

    Sugar Starvation Disrupts Lipid Breakdown by Inducing Autophagy in Embryonic Axes of Lupin (Lupinus spp.) Germinating Seeds

    Get PDF
    Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome鈥攁 key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions
    corecore