58 research outputs found

    Cooperative quantum Parrondo's games

    Full text link
    Coordination and cooperation are among the most important issues of game theory. Recently, the attention turned to game theory on graphs and social networks. Encouraged by interesting results obtained in quantum evolutionary game analysis, we study cooperative Parrondo's games in a quantum setup. The game is modeled using multidimensional quantum random walks with biased coins. We use the GHZ and W entangled states as the initial state of the coins. Our analysis shows than an apparent paradox in cooperative quantum games and some interesting phenomena can be observed.Comment: 13 pages, 10 figure

    Distinguishability of generic quantum states

    Full text link
    Properties of random mixed states of order NN distributed uniformly with respect to the Hilbert-Schmidt measure are investigated. We show that for large NN, due to the concentration of measure, the trace distance between two random states tends to a fixed number D~=1/4+1/π{\tilde D}=1/4+1/\pi, which yields the Helstrom bound on their distinguishability. To arrive at this result we apply free random calculus and derive the symmetrized Marchenko--Pastur distribution, which is shown to describe numerical data for the model of two coupled quantum kicked tops. Asymptotic values for the fidelity, Bures and transmission distances between two random states are obtained. Analogous results for quantum relative entropy and Chernoff quantity provide other bounds on the distinguishablity of both states in a multiple measurement setup due to the quantum Sanov theorem.Comment: 13 pages including supplementary information, 6 figure

    Conditional entropic uncertainty relations for Tsallis entropies

    Get PDF
    The entropic uncertainty relations are a very active field of scientific inquiry. Their applications include quantum cryptography and studies of quantum phenomena such as correlations and non-locality. In this work we find entanglement-dependent entropic uncertainty relations in terms of the Tsallis entropies for states with a fixed amount of entanglement. Our main result is stated as Theorem~\ref{th:bound}. Taking the special case of von Neumann entropy and utilizing the concavity of conditional von Neumann entropies, we extend our result to mixed states. Finally we provide a lower bound on the amount of extractable key in a quantum cryptographic scenario.Comment: 11 pages, 4 figure

    Decoherence effects in the quantum qubit flip game using Markovian approximation

    Full text link
    We are considering a quantum version of the penny flip game, whose implementation is influenced by the environment that causes decoherence of the system. In order to model the decoherence we assume Markovian approximation of open quantum system dynamics. We focus our attention on the phase damping, amplitude damping and amplitude raising channels. Our results show that the Pauli strategy is no longer a Nash equilibrium under decoherence. We attempt to optimize the players' control pulses in the aforementioned setup to allow them to achieve higher probability of winning the game compared to the Pauli strategy.Comment: 19 pages, 7 figure

    QuantumInformation.jl---a Julia package for numerical computation in quantum information theory

    Full text link
    Numerical investigations are an important research tool in quantum information theory. There already exists a wide range of computational tools for quantum information theory implemented in various programming languages. However, there is little effort in implementing this kind of tools in the Julia language. Julia is a modern programming language designed for numerical computation with excellent support for vector and matrix algebra, extended type system that allows for implementation of elegant application interfaces and support for parallel and distributed computing. QuantumInformation.jl is a new quantum information theory library implemented in Julia that provides functions for creating and analyzing quantum states, and for creating quantum operations in various representations. An additional feature of the library is a collection of functions for sampling random quantum states and operations such as unitary operations and generic quantum channels.Comment: 32 pages, 8 figure

    Central limit theorem for reducible and irreducible open quantum walks

    Get PDF
    In this work we aim at proving central limit theorems for open quantum walks on Zd\mathbb{Z}^d. We study the case when there are various classes of vertices in the network. Furthermore, we investigate two ways of distributing the vertex classes in the network. First we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a uniform distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.Comment: 20 pages, 4 figure
    corecore