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Abstract
The entropic uncertainty relations are a very active field of scientific inquiry. Their
applications include quantum cryptography and studies of quantum phenomena such
as correlations and non-locality. In this workwe find entanglement-dependent entropic
uncertainty relations in terms of the Tsallis entropies for states with a fixed amount of
entanglement. Our main result is stated as Theorem 1. Taking the special case of von
Neumann entropy and utilizing the concavity of conditional von Neumann entropies,
we extend our result to mixed states. Finally we provide a lower bound on the amount
of extractable key in a quantum cryptographic scenario.

Keywords Conditional uncertainty relations · Tsallis entropies · Quantum
cryptography

1 Introduction

Formulated by Heisenberg [1], the uncertainty relation gives insight into differences
between classical and quantum mechanics. According to the relation, simultaneous
measurements of some non-commuting observables of a particle cannot be predicted
with arbitrary precision.

Numerous studies over the uncertainty relations led to entropic formulation by
Białynicki-Birula andMycielski [2–4], as a sum of two continuous Shannon entropies,
for probability distributions of position and momentum. As our goal is to consider
general observables, let us choose two Hermitian non-commuting operators X and Y .
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The first uncertainty relation that holds for a pair of arbitrary observables was derived
by Deutsch [5]

H(X) + H(Y ) ≥ −2 log
1 + c

2
= BD, (1)

where H(X) and H(Y ) denote the Shannon entropies of the probability distributions
obtained during measurements of X and Y , respectively. If |φ j 〉, |ψk〉 are the eigen-
vectors of X and Y , then c = max j,k |〈ψ j |φk〉|. Kraus conjectured [6] and Maassen
and Uffink [7] proved a stronger result

H(X) + H(Y ) ≥ −2 log c = BMU , (2)

where H(X), H(Y ) and c are the same as in relation proposed by Deutsch.
The entropic uncertainty relations are a very active field of scientific inquiry [8,9].

One of the reasons is the applications in quantum cryptography [10–12]. Another area
where entropic uncertainty relations are widely used is studies of quantum phenom-
ena such as correlations and non-locality [13–15]. Some results were generalized;
hence, entropic formulations of the uncertainty relation in terms of Rényi entropies
are included in [16]. Uncertainty relations for mutually unbiased bases and symmetric
informationally complete measurements in terms of generalized entropies of Rényi
and Tsallis can be found [17].

In [18] it was shown that entropic uncertainty relations can be derived for binary
observables from effective anti-commutation, which can be important in device-
independent cryptography. This result was generalized in [19] for entropic uncertainty
relations in the presence of quantum memory.

The majorization-based bounds of uncertainty relation were first introduced by
Partovi in [20], which was generalized in [21,22]. In [21], majorization techniques
were applied to obtain lower bound of the uncertainty relation, which can give the
bound stronger than the well-known result of Massen and Uffink. The formulation of
strong majorization uncertainty relation presented in [23] is involved, but in the case
of qubits it can be expressed as

H(X) + H(Y ) ≥ −c log c − (1 − c) log(1 − c) = BMaj2. (3)

The asymptotic analysis of entropic uncertainty relations for random measurements
has been provided in [24] with the use majorization bounds. Some interesting results
along these lines are included in [25–27].

In [28], Berta et al. considered the uncertainty relation for a systemwith the presence
of a quantummemory. In this setup, the system is describedby abipartite densitymatrix
ρAB . Quantum conditional entropy can be defined as

S(A|B) = S(A, B) − S(B), (4)
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where S(B) denotes the vonNeumann entropy of the stateρB = TrAρAB . Equation (4)
is also known as the chain rule. We also introduce the states ρXB and ρY B as

ρXB =
∑

i

(|ψi 〉〈ψi | ⊗ 1) ρAB (|ψi 〉〈ψi | ⊗ 1)

ρY B =
∑

i

(|φi 〉〈φi | ⊗ 1) ρAB (|φi 〉〈φi | ⊗ 1) ,
(5)

which are post-measurement states, when the measurements were performed on the
part A. Berta et al. [28] showed that a bound on the uncertainties of the measurement
outcomes depends on the amount of entanglement between measured particle and
the quantum memory. As a consequence, they formulated a conditional uncertainty
relation given as

S(X |B) + S(Y |B) ≥ BMU + S(A|B) = BBCCRR . (6)

Entropy S(A|B) quantifies the amount of entanglement between the particle and the
memory.TheboundofBerta et al. [28]was improvedbyColes andPiani in [29] through
replacing the state-dependent value BMU with larger parameter. The result ofColes and
Piani was improved in [30]. This relation was also generalized for Rényi entropies,
and several important result can be found in [31–33]. The uncertainty relation is
also considered in the context of quantum-to-classical randomness extractors (QC-
extractors) [34]. It is proved that QC-extractors give rise to uncertainty relation with
the presence of a quantum memory.

In the absence of the quantum memory bound (6) reduces to (2) for pure ρAB . The
results by Berta et al. [28] and by Li et al. [35] can be applied to witnessing entangle-
ment. This is a consequence of the fact that S(A|B) is negative for an entangled state
ρAB . Another field of application of entropic uncertainty relations with the presence
of quantum memory is quantum cryptography [9]. The bound quantified by Berta et
al. [28] was experimentally validated [36].

In this paper we aim at finding entanglement-dependent entropic uncertainty rela-
tions in terms of von Neumann and Tsallis entropies. Our results apply to states with
a fixed amount of entanglement, described by parameter λ. This allows us to find
non-trivial bounds for the entropic uncertainty relation. Otherwise we would obtain
a lower bound equal to zero. This bound is achieved in the case of the maximally
entangled state. Notice that Berta et al. formulated the bound in a similar way. In their
approach the information about entanglement was hidden in terms of H(A|B). In this
case the bound is also zero for the maximally entangled state.

Let us now recall the notion of Tsallis entropy [37] which is a non-additive gener-
alization of von Neumann entropy, and for a state ρX , it is defined as

Tq(X) = 1

q − 1

(
1 −

∑

i

ν
q
i

)
, (7)
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where νi are the eigenvalues of ρX and q ∈ [0,∞). Tsallis entropy is identical to
the Havrda–Charvát structural α entropy [38] in information theory. Note that when
q → 1 we have Tq(X) → S(X). The chain rule applies to Tsallis entropies, hence

Tq(A|B) = Tq(A, B) − Tq(B). (8)

We will use the following notation for Tsallis point entropy

tq(x) = 1

q − 1

(
1 − xq − (1 − x)q

)
. (9)

In the limit q → 1 we recover

h(x) = η(x) + η(1 − x), (10)

where η(x) = −x log x .

2 Qubit conditional uncertainty relations

Without a loss of generality let us assume that we start with an entangled state ρAB =
|ψAB〉〈ψAB |, where |ψAB〉 = √

λ|00〉 + √
1 − λ|11〉. In this case, the parameter λ

describes the entanglement between the parties A and B. We chose the eigenvectors
of X and Y as |φi 〉 = O(θ)|i〉 and |ψi 〉 = O(θ + ε)|i〉, where

O(θ) =
(
cos θ − sin θ

sin θ cos θ

)
∈ SO(2) (11)

is a real rotation matrix. Hence, instead of optimizing the uncertainty relation over
all possible states ρAB , we will instead optimize over θ . Hereafter we assume θ, ε ∈
[0, π/2]. In this case we have

c =
{

| cos ε|, ε ≤ π/4

| sin ε|, ε > π/4.
(12)

It is important to notice that we can restrict our attention to real rotation matrices.
This follows from the fact that any unitary matrix is similar to real rotation matrix.
Matrices are similar, U ∼ V , if for some permutation matrices P1, P2 and diagonal
unitary matrices D1, D2, we have V = P1D1UD2P2 [21]. Next we note that the
eigenvalues of states ρXB are invariant with respect to the equivalence relation.

We should also note here that the two-qubit scenario, simple as it is, may be easily
generalized to an arbitrary dimension of system B.
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As we are interested in binary measurements, the states ρXB and ρY B are rank-2
operators. The nonzero eigenvalues of ρXB can be easily obtained as

μXB
1 =λ sin2(θ) + (1 − λ) cos2(θ),

μXB
2 =λ cos2(θ) + (1 − λ) sin2(θ).

(13)

To obtain the eigenvalues of ρY B we need to replace θ with θ + ε.

2.1 Analytical minima

Using eigenvalues of ρXB and ρY B , we arrive at

Tq(X |B) + Tq(Y |B) = tq(μ
XB
1 ) + tq(μ

Y B
1 ) − 2tq(λ). (14)

Let us perform detailed analysis on the case when q → 1, i.e., the von Neumann
entropy case. We get

S(X |B) + S(Y |B) = h(μXB
1 ) + h(μY B

1 ) − 2h(λ) (15)

In order to obtain an uncertainty relation, we need to minimize this quantity over the
parameter θ . This is a complicated task even in the case λ = 0 and has been studied
earlier [39]. We guess that θ = π/2− ε/2 is an extremal point of (14). Unfortunately,
this point is the global minimum only when

− c tanh−1((1 − 2λ)c) + (2λ − 1)(1 − c2)

c2(1 − 2λ)2 − 1
< 0. (16)

A numerical solution of this inequality is shown in Fig. 1. When this condition is
satisfied, the uncertainty relation is

S(X |B) + S(Y |B)

≥ log 4 + η(1 + c − 2λc) + η(1 − c + 2λc) − 2h(λ).
(17)

When the condition in Eq. (16) is not satisfied, our guessed extreme point becomes a
maximum and two minima emerge, symmetrically to θ = π/2 − ε/2. The reasoning
can be generalized to Tq in a straightforward, yet cumbersome way. The details are
presented in “Appendix.” The solutions of inequality (16) along with inequality (32)
for various values of q are shown in Fig.1

2.2 Bounding the conditional entropies

In order to study the case of general Tsallis entropies Tq , we introduce the following
proposition
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Fig. 1 Numerical solution of
inequality (16) (q = 1) as a
function of λ along with solution
of a corresponding inequality for
chosen other values of q
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Proposition 1 Let α ∈ [0, 1] and q ∈ [0, 2] ∪ [3,∞), then

tq
(
α p + (1 − α)(1 − p)

)

≥ 4

(
αq + (1 − α)q − 21−q

)

αq + (1 − α)q + q − 2
p(1 − p)

(
1 − tq(α)

) + tq(α).
(18)

In the cases q = 2 and q = 3 we have an equality.

Proof We define

f (p) = tq
(
α p + (1 − α)(1 − p)

)

− 4

(
αq + (1 − α)q − 21−q

)

αq + (1 − α)q + q − 2
p(1 − p)

(
1 − tq(α)

) − tq(α).
(19)

Next we note that f (0) = f ( 12 ) = 0. We will show that f has no other zeros on
interval (0, 1

2 ). We calculate

f ′′′(p) = (2α − 1)3(q − 2)q
(
(α − 2α p + p)q−3

− (−α + (2α − 1)p + 1)q−3),
(20)

which is positive for q ∈ [0, 2) ∪ (3,∞) and p ∈ [0, 1
2 ]. Therefore we obtain that

f ′(x) is strictly convex on (0, 1
2 ) and f ′(1/2) = 0.

Now let us assume that for x0 ∈ (0, 1/2) we have f (x0) = 0. Then by Rolle’s
theorem, there exist points 0 < y0 < x0 < y1 < 1

2 such that f ′(y0) = f ′(y1) = 0.
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Together with fact that f ′(1/2) = 0 we obtain a contradiction with the convexity of
f ′ on (0, 1

2 ).
Last thing to show is that for some ε ∈ (0, 1

2 ) we have f (ε) > 0. To show it we
write

f ′(0) = αq−1(2α(q − 2) − q)

q − 1

+ (4α − 2αq + q − 4)(1 − α)q−1 + 23−q

q − 1
=: g(α).

(21)

Now we note that g(α) is positive for α ∈ (0, 1) \ { 1
2

}
and q ∈ [0, 2) ∪ (3,∞).

This follows from convexity of g on these sets and the fact, that it has a minimum,
g

( 1
2

) = 0. From this fact there exist ε > 0 such that f (ε) > 0.
The equalities in the case q = 2, 3 follow from a direct inspection. ��
Now we are ready to state and prove the main result of this work

Theorem 1 Let ρAB = |ψAB〉〈ψAB |, where |ψAB〉 = √
λ|00〉 + √

1 − λ|11〉. Let
us choose two observables X and Y with eigenvectors |φi 〉 = O(θ)|i〉 and |ψi 〉 =
O(θ + ε)|i〉, where O(θ) is as in Eq. (11). Then, the Tsallis entropic conditional
uncertainty relation is

Tq(X |B) + Tq(Y |B) ≥ 2
λq + (1 − λ)q − 21−q

λq + (1 − λ)q + q − 2
(1 − tq(λ))(1 − c2). (22)

Proof Applying Proposition 1 to Eq. (14) we get

Tq(X |B) + Tq(Y |B)

≥ λq + (1 − λ)q − 21−q

λq + (1 − λ)q + q − 2
(1 − tq(λ))(sin2(2θ + 2ε) + sin2 2θ)

(23)

The right-hand side achieves a unique minimum θ = π/2 − ε/2 for ε ≤ π/4 and
θ = π/4 − ε/2 for ε > π/4. Inserting this value we recover Eq. (22). ��
Remark 1 In the limit q → 1 we get the following uncertainty relation for Shannon
entropies

S(X |B) + S(Y |B) ≥ 2(log 2 − h(λ))(1 − c2) = BK PP . (24)

Remark 2 Using the concavity of the conditional von Neumann entropy, we may gen-
eralize bound (24) to mixed states ρAB . We get

S(X |B) + S(Y |B) ≥ 2(log 2 − S(B))(1 − c2). (25)

In order to see it, we consider a system in a mixed state ρAB and its decomposition
into pure states ρAB = ∑

piρ
(i)
AB . We will use a lower index which will indicate the

state of the system. The post-measurement states ρXB , ρY B are defined as in Eq. (5).
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Fig. 2 Comparison of our result
with known bounds in the case
λ = 0. Blue solid line is the
(numerical) optimal solution,
dashed green is the BMU bound,
black dashed-dotted is BMaj2,
and red dotted is BK PP (Color
figure online)
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BMaj2
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Optimal

Now we write

S(X |B)ρXB + S(Y |B)ρY B ≥
∑

i

pi S(X |B)
ρ

(i)
XB

+
∑

i

pi S(X |B)
ρ

(i)
Y B

≥ 2 log 2(1 − c2) − 2(1 − c2)
∑

i

pi S(B)
ρ

(i)
B

≥ 2 log 2(1 − c2) − 2(1 − c2)S(B)ρB .

(26)

The first inequality above follows from the concavity of the conditional von Neumann
entropy. The second one is the usage of (24), while the third one follows from the
concavity of the von Neumann entropy.

Remark 3 The state-dependent entropic uncertainty relation for q → 1 reads

S(X |B) + S(Y |B) ≥ 2(log 2 − h(λ))(sin2(2θ + 2ε) + sin2 2θ)

= B(θ).
(27)

A comparisonwith the known entropic uncertainty relations for λ = 0 and q → 1 is
shown in Fig. 2. As can be seen, our result gives a tighter bound than the one obtained
by Massen and Uffink for all values of ε. The bound is also tighter than BMaj2 when
ε is in the neighborhood of π/4.

A comparison of exact value (15), state-dependent lower bound (27) and BBCCRR

for different parameters λ, θ and ε is presented in Figs. 3 and 4.
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Fig. 3 Comparison of our state-dependent result with BBCCRR and the exact value of conditional entropies
for different parameters λ and ε as a function of θ . a λ = 0.1, ε = π/4.2. b λ = 0.1, ε = π/6

Fig. 4 Comparison of B(θ) with
BBCCRR and exact values of
conditional entropies as a
function of λ. Here ε = π/8,
θ = π/2 − ε/2
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3 Security of quantum key distribution protocols

One of the possible applications of the uncertainty relation is quantum cryptography,
where the relation allows us to bound of the amount of key the parties are able to
extract per state.

Assume that an eavesdropper creates a quantum system ρABE . Next, parts A and
B are distributed to Alice and Bob. The generation of a secret key is based on mea-
surements X ,Y and X ′,Y ′ performed by Alice and Bob, respectively. Subsequently,
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Alice and Bob inform each other of their choices of measurements. The security of
the key depends on the correlation between the measurement outcomes.

According to the investigations of Devetak and Winter [40], the amount of
extractable key is quantified as K ≥ H(X |E) − H(X |B). Using our bound we are
able to bound the amount of extractable key in terms of von Neumann entropies by

K ≥ 2(1 − c2)(log 2 − S(B)) − S(A|B) − S(X |X ′) − S(Y |Y ′). (28)

In the above S(X |X ′) is the conditional entropy of the state shared by Alice and
Bob, when both parties execute the measurement schemes X , X ′, respectively. This
relates our result to [41]. In our case Alice and Bob need to upper bound entropies
S(A|B), S(X |X ′) and S(Y |Y ′). The former entropies can be bounded by quantities
such as frequency of the agreement of the outcomes.

4 Conclusion

In this paper, we have derived new entanglement-dependent uncertainty relations in
terms of von Neumann and Tsallis entropies for qubits and binary observables with
respect to quantum side information. Our bounds were compared with well-known
bounds derived by Massen and Uffink [7], Rudnicki et al. [23] and Berta et al. [28].
This paper can be also treated as a generalization of results included in [39].

Presented results are expected to have application to witnessing entanglement or
in quantum cryptography as a measure of information in quantum key distribution
protocols. Verification of our results in potential applications seems to be interesting
task.
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Appendix: Generalization of Eq. (14) to Tsallis entropy case

We start by introducing the following notation

ηq(x) = − xq

q − 1
. (29)

Using this notation we note that

tq(x) = 1

q − 1
+ ηq(x) + ηq(1 − x) (30)
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Now we recall Eq. (14)

Tq(X |B) + Tq(Y |B) = tq(μ
XB
1 ) + tq(μ

Y B
1 ) − 2tq(λ). (31)

Again, we guess that the right-hand side as a minimum at θ = π/2 − ε/2. Similar to
the case q → 1 we get that this is a minimum only when

(1 + c − 2λc)q−2
(
2λ − 1 + qc2(1 − 2λ) + c

q − 1

)

+ (1 − c + 2λc)q−2
(
2λ − 1 + qc2(1 − 2λ) − c

q − 1

)
> 0. (32)

This follows from the second derivative of Eq. (14) with respect to θ . The plots of the
solutions to this inequality are shown in Fig. 1. Note that when q → 1 we recover
bound (16). When this is a minimum, we obtain

Tq(X |B)+Tq(Y |B) ≥ 2

q − 1
+21−q(ηq(1+c−2λc)+ηq(1−c+2λc))−2tq(λ). (33)

In the case when q → 1 we recover Eq. (17).
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