2 research outputs found

    CaMKII delta C Drives Early Adaptive Ca(2+)Change and Late Eccentric Cardiac Hypertrophy

    Get PDF
    Rationale: CaMKII (Ca2+-Calmodulin dependent protein kinase) delta C activation is implicated in pathological progression of heart failure (HF) and CaMKII delta C transgenic mice rapidly develop HF and arrhythmias. However, little is known about early spatio-temporal Ca(2+)handling and CaMKII activation in hypertrophy and HF. Objective: To measure time- and location-dependent activation of CaMKII delta C signaling in adult ventricular cardiomyocytes, during transaortic constriction (TAC) and in CaMKII delta C transgenic mice. Methods and Results: We used human tissue from nonfailing and HF hearts, 4 mouse lines: wild-type, KO (CaMKII delta-knockout), CaMKII delta C transgenic in wild-type (TG), or KO background, and wild-type mice exposed to TAC. Confocal imaging and biochemistry revealed disproportional CaMKII delta C activation and accumulation in nuclear and perinuclear versus cytosolic regions at 5 days post-TAC. This CaMKII delta activation caused a compensatory increase in sarcoplasmic reticulum Ca(2+)content, Ca(2+)transient amplitude, and [Ca2+] decline rates, with reduced phospholamban expression, all of which were most prominent near and in the nucleus. These early adaptive effects in TAC were entirely mimicked in young CaMKII delta TG mice (6-8 weeks) where no overt cardiac dysfunction was present. The (peri)nuclear CaMKII accumulation also correlated with enhanced HDAC4 (histone deacetylase) nuclear export, creating a microdomain for transcriptional regulation. At longer times both TAC and TG mice progressed to overt HF (at 45 days and 11-13 weeks, respectively), during which time the compensatory Ca(2+)transient effects reversed, but further increases in nuclear and time-averaged [Ca2+] and CaMKII activation occurred. CaMKII delta TG mice lacking delta B exhibited more severe HF, eccentric myocyte growth, and nuclear changes. Patient HF samples also showed greatly increased CaMKII delta expression, especially for CaMKII delta C in nuclear fractions. Conclusions: We conclude that in early TAC perinuclear CaMKII delta C activation promotes adaptive increases in myocyte Ca(2+)transients and nuclear transcriptional responses but that chronic progression of this nuclear Ca2+-CaMKII delta C axis contributes to eccentric hypertrophy and HF

    Marrubium vulgare ethanolic extract induces proliferation block, apoptosis, and cytoprotective autophagy in cancer cells in vitro

    No full text
    Marrubium vulgare is a European medicinal plant with numerous beneficial effects on human health. The aim of the study was to isolate the plant ethanolic extract (MVE) and to investigate its anti-melanoma and anti-glioma effects. MVE was prepared by the modified pharmacopoeial percolation method and characterized by UHPLC-LTQ OrbiTrap MS. MVE dose-dependently reduced viability of melanoma (B16) and glioma (U251) cells, but not peripheral blood mononuclear cells. It arrested cell cycle in S+G2/M phase, which was associated with the activation of MAP kinase p38 and up-regulation of antiproliferative genes p53, p21 and p27. MVE induced oxidative stress, while antioxidants abrogated its antitumor effect. Furthermore, MVE induced mitochondrial depolarization, activation of caspase-9 and -3, Parp cleavage, phosphatidylserine exposure and DNA fragmentation. The mitochondrial apoptotic pathway was associated with the up-regulation of proapoptotic genes Pten, Bak1, Apaf1, and Puma and down-regulation of antiapoptotic genes survivin and Xiap. MVE also stimulated the expression of autophagy-related genes Atg5, Atg7, Atg12, Beclin-1, Gabarab and Sqstm1, as well as LC3-I conversion to the autophagosome associated LC3-II, while autophagy inhibitors exacerbated its cytotoxicity. Finally, the most abundant phenolic components of MVE, ferulic, p-hydroxybenzoic, caffeic and chlorogenic acids, did not exert a profound effect on viability of tumor cells, suggesting that other components individually or in concert are the mediators of the extracts' cytotoxicity. By demonstrating the ability of MVE to inhibit proliferation, induce apoptosis and cytoprotective autophagy, our results suggest that MVE, alone or combined with autophagy inhibitors, could be a good candidate for anti-melanoma and anti-glioma therapy
    corecore