5 research outputs found

    Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome

    Get PDF
    Purpose Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. Methods We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. Results Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. Conclusion Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease

    Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome

    Get PDF
    Purpose: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. Methods: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. Results: Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. Conclusion: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease

    Clinical next generation sequencing reveals an H3F3A gene as a new potential gene candidate for microcephaly associated with severe developmental delay, intellectual disability and growth retardation

    No full text
    Microcephaly is characterized by significant clinical and genetic heterogeneity, therefore reaching the genetic diagnosis remains challenging in this group of disorders. We describe a case of a girl with secondary microcephaly, associated with severe developmental delay, intellectual disability, growth retardation and dysmorphic features. For purposes of clinical genetic diagnostic testing, we performed trio whole exome sequencing in the proband and unaffected parents. We found a heterozygous de novo missense variant in the H3F3A gene in the proband (NM_ 002107.4: c.185T>G), which is absent from the gnomAD and from the Slovenian Genome databases. The identified variant affects a highly conserved leucine residue at position 62 of the histone H3 protein (H3.3) and is predicted to affect the physicochemical properties of the affected protein. Mouse models, which demonstrated involvement of H3.3 protein in the control of neuronal- and glial-specific gene expression patterns that control synaptic connectivity and behavioral plasticity. Additionally, we also identified similar cases reported in the ClinVar database. These arguments support the possible pathogenic role of the reported genetic variant and thus suggest a novel molecular mechanism for this syndromic form of microcephaly

    Intraoperative anaphylactic shock in a child with no history of type I hypersensitivity

    No full text
    Natural rubber latex is the second most implicated agent in intraoperative anaphylactic reactions. This report describes a case of intraoperative anaphylaxis occurring in a non-atopic fourteen-year-old girl undergoing multiple surgical procedures, but without spina bifida, in which latex surgical gloves were the main culprit for the anaphylactic reactions. Clinical manifestations of an anaphylactic reaction were also experienced during the examination of the possible cause of intraoperative anaphylaxis by skin prick testing with a latex allergen extract. Skin tests with anesthetics were negative. Specific IgE to latex was positive at 92.9 kUA/L (class 5). The molecular basis for the reported intraoperative anaphylaxis was ascribed to three low-molecular mass latex allergens (10-15 kD) detected in the brand of latex surgical gloves used during the operation. Given the potential of a dramatic outcome, latex allergy testing as a regular preoperative measure may contribute to the reduction of anaphylactic reactions during surgical interventions
    corecore