5 research outputs found

    Petrogenesis of Miocene alkaline volcanic suites from western Bohemia: Whole rock geochemistry and Sr-Nd-Pb isotopic signatures

    No full text
    The Mid to Late Miocene intraplate alkaline volcanic suites of western Bohemia are relict of the intensive voluminous volcanism accompanied by large-scale uplift and doming. The association with the uplift of the NE flank of the Cheb-Domažlice Graben (CDG) is uncertain in view of the mostly transpressional tectonics of the graben. The volcanism is most probably of the Ohře/Eger Rift off-rift settings. Two cogenetic volcanic suites have been recognised: (i) silica-saturated to oversaturated consisting of olivine basalt-trachybasalt-(basaltic) trachyandesite-trachyte-rhyolite (13.5 to 10.2 Ma) and (ii) silica-undersaturated (significantly Ne-normative) (melilite-bearing) olivine nephelinite-basanite-tephrite (18.3 to 6.25 Ma). A common mantle source is suggested by similar primitive mantle-normalised incompatible element patterns and Sr-Nd-Pb isotopic compositions for the assumed near-primary mantle-derived compositions of both suites, i.e., olivine basalt and olivine nephelinite. Apparently, they were generated by different degrees of partial melting of a common mantle source, with garnet, olivine and clinopyroxene in the residuum. Negative Rb and K anomalies indicate a residual K-phase (amphibole/phlogopite) and melting of partly metasomatised mantle lithosphere. The evolution of the basanite-olivine basalt-trachybasalt-(basaltic) trachyandesite-trachyte-rhyolite suite suggests the presence of an assimilation-fractional crystallization process (AFC). Substantial fractionation of olivine, clinopyroxene, Fe-Ti oxide, plagioclase/alkali feldspar and apatite accompanied by a significant assimilation of magma en route by crustal material is most evident in evolved member, namely, trachytes and rhyolites. The magmas were probably sourced by both sub-lithospheric and lithospheric partly metasomatised mantle. The evolution of the (melilite-bearing) olivine nephelinite-basanite-tephrite suite is less clear because of its limited extent. Parental magma of both these rock suites is inferred to have originated by low-degree melting of the mantle source initiated at ca. 18 Ma and reflects mixing of asthenosphere-derived melts with isotopically enriched lithospheric melts. The older Oligocene alkaline rocks (29-26 Ma) occur within the Cheb-Domažlice Graben (CDG) locally but are significant in the closely adjacent neighbouring western Ohře Rift. The Sr-Nd-Pb isotopic composition of primitive volcanic rocks of both suites is similar to that of the European Asthenospheric Reservoir (EAR). Initial Pb isotopic data plot partly above the northern hemisphere reference line at radiogenic 206Pb/204Pb ratios of ~19 to 20, and indicate the presence of a Variscan crustal component in the source. © 2015 Elsevier GmbH

    Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units

    No full text
    The composite Albian–Eocene orogenic wedge of the northern part of the Inner Western Carpathians (IWC) comprises the European Variscan basement with the Upper Carboniferous–Triassic cover and the Jurassic to Upper Cretaceous sedimentary successions of a large oceanic–continental Atlantic (Alpine) Tethys basin system. This paper presents an updated evolutionary model for principal structural units of the orogenic wedge (i.e., Fatricum, Tatricum and Infratatricum) based on new and published white mica 40Ar/39Ar geochronology and P–T estimates by Perple_X modeling and geothermobarometry. The north-directed Cretaceous collision led to closure of the Jurassic–Early Cretaceous basins, and incorporation of their sedimentary infill and a thinned basement into the Albian–Cenomanian/Turonian accretionary wedge. During this compressional D1 stage, the subautochthonous Fatric structural units, including the present-day higher Infratatric nappes, achieved the metamorphic conditions of ca. 250–400 °C and 400–700 MPa. The collapse of the Albian–Cenomanian/Turonian wedge and contemporary southward Penninic oceanic subduction enhanced the extensional exhumation of the low-grade metamorphosed structural complexes (D2 stage) and the opening of a fore-arc basin. This basin hemipelagic Coniacian–Campanian Couches-Rouges type marls (C.R.) spread from the northern Tatric edge, throughout the Infratatric Belice Basin, up to the peri-Pieniny Klippen Belt Kysuca Basin, thus tracing the south-Penninic subduction. The ceasing subduction switched to the compressional regime recorded in the trench-like Belice “flysch” trough formation and the lower anchi-metamorphism of the C.R. at ca. 75–65 Ma (D3 stage). The Belice trough closure was followed by the thrusting of the exhumed low-grade metamorphosed higher Infratatric complexes and the anchi-metamorphosed C.R. over the frontal unmetamorphosed to lowest anchi-metamorphosed Upper Campanian–Maastrichtian “flysch” sediments at ca. 65–50 Ma (D4 stage). Phengite from the Infratatric marble sample SRB-1 and meta-marl sample HC-12 produced apparent 40Ar/39Ar step ages clustered around 90 Ma. A mixture interpretation of this age is consistent with the presence of an older metamorphic Ph1 related to the burial (D1) within the Albian–Cenomanian/Turonian accretionary wedge. On the contrary, a younger Ph2 is closely related to the late- to post-Campanian (D3) thrust fault formation over the C.R. Celadonite-enriched muscovite from the subautochthonous Fatric Zobor Nappe meta-quartzite sample ZI-3 yielded a mini-plateau age of 62.21 ± 0.31 Ma which coincides with the closing of the Infratatric foreland Belice “flysch” trough, the accretion of the Infratatricum to the Tatricum, and the formation of the rear subautochthonous Fatricum bivergent structure in the Eocene orogenic wedge

    Carpathian Shear Corridor – A strike-slip boundary of an extruded crustal segment

    No full text
    The Carpathian Shear Corridor (CSC), a morphostructurally distinctive ENE-WSW brittle shear zone, is a prominent dynamic interface of crustal fragments shifted during an oblique collision process combined with lateral extrusions in the Late stages of the Western Carpathians tectonic evolution. This tectonics was due to convection in the upper mantle, driven mainly by slab-pull forces related to a subductional process in front of prograding Carpathians. The CSC separates the marginal segment of the Western Carpathians, already firmly attached to the European plate, from the southern still eastwardly moving block. This process led to structural transpositions, anomalous rotation of small blocks and tilting and uplift/subsidence events, resulting in a tectonic style of horst and intramountaine basin alternations within the corridor. Preliminary paleomagnetic data indicate anomalous CCW block rotations within this corridor, and AFT ages indicate Early and Late Miocene (ca 24–22 Ma and ca 10–7 Ma) fault controlled exhumation events triggered by increased shear zone activity. Deep seismic sections, magnetotelluric and gravity data show that CSC follows a frontal ramp of the Western Carpathians thrust over the foreland. The CSC remains an active strike-slip shear zone, and therefore the most important earthquake risk-zone in the Slovakian portion of the Western Carpathians. It presents a lateral ramp transform boundary of eastwardly extruding crustal segment during the Miocene and up to the recent time

    Active Magmatic Underplating in Western Eger Rift, Central Europe

    No full text
    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of ~28–30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting
    corecore