622 research outputs found

    Vstopanje Slovenije v EU in trajnostni razvoj

    Get PDF
    Osnovna tema prispevka je vpraŔanje, ali vstopanje v Evropsko unijo že samo posebi zagotavlja uveljavljanje trajnostnega razvoja. V prvem delu ugotavljam,da približevanje Slovenije Evropski uniji samo po sebi Ŕe ne zagotavlja tudi uveljavljanja razvoja v skladu z načeli trajnosti. V nadaljevanju to ugovotitev nekoliko relativiziram z navajanjem dejstev. ki kažejo na to, da uveljavljanje pravnega reda EU odpralja nekatere slabosti dosedanje okoljske politike. Prav te spremembe, skupaj z dobrim izhodiŔčnim stanjem okolja ter že sprejeto Strategijo gospodarskega razvooja, vidim kot priložnost, da se pričakovani hitrejŔi razvoj po vstopu v EU izkoristi tudi za uveljavljanje trajnostnega razvoja

    ToksikoloŔke lastnosti kanabinoidov

    Get PDF
    Cannabis sativa L. contains more than 100 phytocannabinoids that can interact with cannabinoid receptors CB1 and CB2. None of the cannabinoid receptor ligands is entirely CB1- or CB2-specific. The effects of cannabinoids therefore differ not just because of different potency at cannabinoid receptors but also because they can interact with other non-CB1 and non-CB2 targets, such as TRPV1, GPR55, and GPR119. The most studied phytocannabinoid is Ī”9-tetrahydrocannabinol (THC). THC is a partial agonist at both cannabinoid receptors, but its psychotomimetic effect is produced primarily via activation of the CB1 receptor, which is strongly expressed in the central nervous system, with the noteworthy exception of the brain stem. Although acute cognitive and other effects of THC are well known, the risk of irreversible neuropsychological effects of THC needs further research to elucidate the association. Unlike THC, phytocannabinoid cannabidiol (CBD) does not appear to have psychotomimetic effects but may interact with some of the effects of THC if taken concomitantly. CBD administered orally has recently undergone well-controlled clinical trials to assess its safety in the treatment of paediatric epilepsy syndromes. Their findings point to increased transaminase levels as a safety issue that calls for postmarketing surveillance for liver toxicity. The aim of this review is to summarise what is known about acute and chronic toxicological effects of both compounds and address the gaps in knowledge about the safety of exogenous cannabinoids that are still open.Iz rastline Cannabis sativa L. so do sedaj izolirali že več kot 100 fitokanabinoidov, poleg njih pa obstaja več kot 550 sintetičnih spojin, ki delujejo na kanabinoidne receptorje CB1 in CB2. Prav tako je treba omeniti, da nobeden od ligandov kanabinoidnih receptorjev ni popolnoma CB1- ali CB2-specifičen. Zato se učinki vsakega od njih razlikujejo ne le zaradi različne moči na kanabinoidnih receptorjih, ampak tudi zato, ker lahko delujejo na druga ne-CB1 in ne-CB2 prijemaliŔča. Najpogosteje proučevani kanabinoid je Ī”9-tetrahidrokanabinol (THC). THC je delni agonist na obeh kanabinoidnih receptorjih, vendar je njegov psihoaktivni učinek povezan predvsem z aktivacijo receptorjev CB1. Receptor CB1 je eden izmed metabotropnih receptorjev z največjo ekspresijo v osrednjem živčevju, z izjemo možganskega debla. Čeprav so akutni učinki na osrednji živčni sistem THC jasno opredeljeni, je tveganje za ireverzibilne nevropsiholoÅ”ke učinke THC kot neodvisnega dejavnika potrebno nadalje raziskati za pojasnitev povezave. Za razliko od THC, fitokanabinoid kanabidiol (CBD) nima psihoaktivnih učinkov, vendar lahko pri sočasni uporabi vpliva na nekatere učinke THC. CBD, ki nima pomembne afinitete za CB1 in CB2, aktivira ali zavira Å”tevilne uveljavljene in domnevne farmakoloÅ”ke tarče. CBD je kot aktivna snov v zdravilu EpidiolexĀ® pred kratkim opravil nadzorovana klinična preskuÅ”anja, da so ocenili njegovo varnost pri zdravljenju redkih epileptičnih sindromov pri otrocih. Največjo zaskrbljenost glede varnosti so predstavljale poviÅ”ane vrednosti transaminaz. Zato je treba izvesti postmarketinÅ”ki nadzor toksičnosti za jetra. Članek bo povzel kar je znano o akutnih in kroničnih toksikoloÅ”kih učinkih, katere Å”tudije Å”e manjkajo in kaj so negotovosti v zvezi z varnostjo eksogenih kanabinoidov

    MATHEMATICAL MODELING OF MOLECULAR TRANSMEMBRANE TRANSPORT AND CHANGES OF TISSUESĀ“ DIELECTRIC PROPERTIES DUE TO ELECTROPORATION

    Full text link
    Visokonapetostni električni pulzi povečajo prepustnost celične membrane (Tsong 1991Weaver 1993Kotnik et al. 2012) skozi pore (Abidor et al. 1979), ki nastanejo na tistih njenih delih, kjer vsiljena transmembranska napetost preseže kritično vrednost (Towhidi et al. 2008Kotnik et al. 2010). Elektroporacija je reverzibilna, če si celica po pulzih opomore, in ireverzibilna, če je Å”koda preobsežna in celica odmre (Pakhomova et al. 2013bJiang et al. 2015a). Trenutne optične metode por ne morejo zaznati, zato njihov nastanek zaznavamo posredno, bodisi z meritvami vnosa različnih molekul v celice ali z meritvami električnih lastnosti celic (Napotnik in Miklavčič 2017). Uporaba elektroporacije V živilski industriji (Toepfl 2012Toepfl et al. 2014) uporabljamo elektroporacijo oziroma pulzirajoča električna polja (angl. pulsed electric fields), kar je uveljavljen izraz v tej industriji, za uničevanje patogenih organizmov in njihovih produktov (encimov in toksinov). V nasprotju s termično obdelavo hrane električni pulzi ne vplivajo na okus, barvo ali hranilno vrednost. V biotehnologiji uporabljamo elektroporacijo za ekstrakcijo molekul iz mikroorganizmov in rastlin, s čimer se izognemo uporabi kemičnih sredstev in ne uničimo celičnih organelov, torej se izognemo tudi dodatnemu čiŔčenju končnega produkta (Sack et al. 2010Haberl et al. 2013aMahnič-Kalamiza et al. 2014bKotnik et al. 2015). Primeri: ekstrakcija DNK iz bakterijsladkorja iz sladkorne pese (Haberl et al. 2013b), sokov iz sadjapolifenolov iz grozdja za izboljÅ”anje kvalitete vina (PuĆ©rtolas et al. 2010)vode pri suÅ”enju zelene biomase, ki služi kot vir za biogorivo (Golberg et al. 2016). Elektroporacija je tudi nova metoda pri zamrzovanju celic in tkiv, angl. cryopreservation (Galindo in Dymek 2016Dovgan et al. 2017). Elektroporacijo uporabljamo tudi v medicini (Miklavčič et al. 2010Yarmush et al. 2014), in sicer pri elektrokemoterapiji (Miklavčič et al. 2012Mali et al. 2013Cadossi et al. 2014Miklavčič et al. 2014Campana et al. 2014SerÅ”a et al. 2015), netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo (Davalos et al. 2005Garcia et al. 2010JosĆ© et al. 2012Cannon et al. 2013Scheffer et al. 2014bJiang et al. 2015aRossmeisl et al. 2015), genski terapiji (Golzio et al. 2002Vasan et al. 2011Gothelf in Gehl 2012Calvet et al. 2014Heller in Heller 2015Trimble et al. 2015) in vnosu učinkovin v kožo in skoznjo (Denet et al. 2004Zorec et al. 2013b). Pri genski terapiji vnesemo v celice plazmide, v katerih je zapisana sinteza določenega proteina, ki lahko spremeni bioloÅ”ko funkcijo celice (Aihara in Miyazaki 1998Heller in Heller 2015). Z elektroporacijo poviÅ”amo varnost genske terapije, saj se izognemo uporabi virusov in kemikalij. Mehanizmi genske terapije z elektroporacijo Å”e niso popolnoma pojasnjeni, osnovni koraki so opisani v literaturi (Rosazza et al. 2016). Z elektroporacijo lahko zlivamo različne celice, s čimer pridobivamo celice, ki proizvajajo monoklonska protitelesa ali inzulin (Ramos in TeissiĆ© 2000Trontelj et al. 2008Rems et al. 2013). V doktorski disertaciji sem se osredotočila na uporabo elektroporacije v medicini, predvsem pri elektrokemoterapiji, netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo in pri vnosu učinkovin v kožo in skoznjo je, zato so ti trije posegi podrobneje opisani v naslednjem poglavju. Medicinski posegi z elektroporacijo ā€“ elektrokemoterapija, netermično odstranjevanje tkiva z ireverzibilno elektroporacijo in vnos učinkovin v kožo in skoznjo Elektrokemoterapija je kombinacija kemoterapije in električnih pulzov, dovedenih neposredno na tarčno tkivo. Električni pulzi povečajo prepustnost celične membrane za kemoterapevtike, zato povečamo učinkovitost zdravljenja, obenem pa zmanjÅ”amo dovedeno dozo kemoterapevtika in omilimo stranske učinke. Celoten tumor mora biti pokrit z dovolj visokim električnim poljem, da povečamo prepustnost vseh tumorskih celic (Miklavčič et al. 2006a), zagotoviti pa moramo tudi dovolj visoko koncentracijo kemoterapevtika znotraj tumorja (Miklavčič et al. 2014). OkoliÅ”ko tkivo ne sme biti uničeno, torej mora biti električno polje okoli tumorja pod mejo za ireverzibilno elektroporacijo. Pri elektrokemoterapiji običajno dovajamo osem pulzov dolžine 100 Ī¼s s ponavljalno frekvenco 1 Hz. S poskusi določena meja za poviÅ”anje prepustnosti tumorskega tkiva je 0,4 kV/cm (Miklavčič et al. 2010). Osem pulzov je bilo določenih kot optimalno Å”tevilo pulzov (Marty et al. 2006Mir et al. 2006), večje Å”tevilo dovedenih pulzov namreč že zmanjÅ”uje preživetje (Dermol in Miklavčič 2015). Za zdravljenje tumorjev z elektrokemoterapijo so bili definirani standardni postopki (angl. standard operating procedures) (Marty et al. 2006Mir et al. 2006), kjer so glede na Å”tevilo tumorjev, njihovo velikost in lokacijo (na koži ali pod kožo) določeni tip elektrod, kemoterapevtik, anestezija in način dovajanja kemoterapevtika. Kemoterapevtik lahko dovedemo lokalno ali sistemsko. V elektrokemoterapiji oz. terapiji z električnimi pulzi sta najbolj razÅ”irjena kemoterapevtika cisplatin in bleomicin. Z elektrokemoterapijo je možno zdraviti tudi globlje ležeče tumorje (Miklavčič et al. 2010Pavliha et al. 2013Edhemović et al. 2014Miklavčič in Davalos 2015). V zadnjem času se uveljavlja tudi uničevanje tumorskih celic z visokimi koncentracijami kalcija in električnimi pulzi (Frandsen et al. 2015Frandsen et al. 2016Frandsen et al. 2017). Pri elektrokemoterapiji se pojavijo Å”e dodatni učinki, ki poviÅ”ajo učinkovitost elektroporacije. Vazokonstrikcija zmanjÅ”a spiranje kemoterapevtika iz tumorja in s tem ohranja visoko koncentracijo kemoterapevtika v tumorju, obenem se zmanjÅ”a pretok krvi skozi tumor, kar povzroči hipoksijo in pomanjkanje hranilnih snovi (Mir 2006SerÅ”a et al. 2008). Elektrokemoterapija sproži tudi odziv imunskega sistema, ki nato odstrani preostale tumorske celice (SerÅ”a et al. 2015). Z ireverzibilno elektroporacijo netermično odstranjujemo tumorje brez uporabe kemoterapevtika (Jiang et al. 2015a). Tako se popolnoma izognemo stranskim učinkom kemoterapevtikov, vendar na račun več dovedene energije in posledično Joulovega gretja. Pri ireverzibilni elektroporaciji dovajamo več (okoli 90) električnih pulzov, dolgih od 50 Ī¼s do 100 Ī¼s, s ponavljalno frekvenco 1 Hz. Dovedeno električno polje je v rangu nekaj kV/cm, kar je dosti več kot pri elektrokemoterapiji. Pri ireverzibilni elektroporaciji lahko z visoko natančnostjo odstranimo želeno tkivo ā€“ območje med uničenim in nepoÅ”kodovanim tkivom je Å”iroko le nekaj premerov celic (Rubinsky et al. 2007). Za odstranjevanje tumorjev tradicionalno uporabljamo termične metode (Hall et al. 2014) ā€“ radiofrekvenčno odstranjevanje in odstranjevanje s tekočim duÅ”ikom, kjer tkivo uničujemo z visoko oz. z nizko temperaturo. Prednost ireverzibilne elektroporacije pred uveljavljenimi termičnimi metodami je krajÅ”i čas zdravljenja, izognemo se učinkom hlajenja oz. gretja tkiva zaradi bližine žil (Golberg et al. 2015), pri čemer ostanejo okoliÅ”ke pomembne strukture (žile, živci) nedotaknjene (Jiang et al. 2015a). Tudi pri ireverzibilni elektroporaciji je v dokončno odstranitev tumorskih celic vpleten imunski sistem (Neal et al. 2013). Pri elektrokemoterapiji in ireverzibilni elektroporaciji se zaradi daljÅ”ih pulzov in ponavljalne frekvence 1 Hz pojavljajo težave zaradi krčenja miÅ”ic (Miklavčič et al. 2005), bolečine med dovajanjem pulzov, heterogenosti električnih lastnosti tkiv v tem frekvenčnem področju ter zaradi možnosti srčnih aritmij (Ball et al. 2010). Bolečini in krčenju miÅ”ic se lahko izognemo, če pulze dovajamo z viÅ”jo frekvenco, npr. 5 kHz (Županič et al. 2007SerÅ”a et al. 2010). Srčnim aritmijam se izognemo tako, da s sinhroniziramo dovedene električne pulze z električno aktivnostjo srčne miÅ”ice (Mali et al. 2008Deodhar et al. 2011aMali et al. 2015). Bolečini, krčenju miÅ”ic in heterogenosti električnih lastnosti tkiv se lahko izognemo z dovajanjem 1 Ī¼s bipolarnih pulzov (Arena et al. 2011Arena in Davalos 2012Sano et al. 2015). V zadnjem času so se pojavile tudi metode, s katerimi so vnos barvil v celico dosegli brezkontaktno s t. i. magnetoporacijo (Chen et al. 2010Towhidi et al. 2012Kardos in Rabussay 2012Novickij et al. 2015Kranjc et al. 2016Novickij et al. 2017bNovickij et al. 2017a). Elektroporacijo lahko uporabljamo ne le za zdravljenje tumorjev, temveč tudi za vnos učinkovin v kožo in skoznjo. Vnos učinkovin skozi kožo je neinvaziven, poleg tega pa se izognemo degradaciji učinkovin pri prehodu skozi prebavni trakt. Skozi kožo lahko preide le malo molekul, zato uporabljamo različne metode za povečanje prehoda učinkovin ā€“ iontoforezo, radiofrekvenčno mikroablacijo, laser, mikroigle, ultrazvok in elektroporacijo (Zorec et al. 2013b). Proces elektroporacije kože je slabo razumljen. Predpostavljamo, da pri dovajanju visokonapetostnih električnih pulzov v roženi plasti nastanejo lokalna transportna območja, kjer sta poviÅ”ani električna prevodnost in prepustnost (Pliquett et al. 1996Pliquett et al. 1998Pliquett et al. 1998PavÅ”elj in Miklavčič 2008a). Skozi lokalna transportna območja lahko nato učinkovine Å”e nekaj ur po dovedenih pulzih vstopajo skozi kožo v krvni obtok (Zorec et al. 2013a). Gostota teh območij je odvisna od električnega polja v koži ā€“ viÅ”je električno polje jih povzroči več. Velikost lokalnih transportnih območij je odvisna od trajanja pulza. Med samim pulzom se zaradi Joulovega gretja topijo lipidi v roženi plasti, kar povzroči njihovo Å”irjenje (Pliquett et al. 1996Prausnitz et al. 1996Pliquett et al. 1998Weaver et al. 1999Vanbever et al. 1999Gowrishankar et al. 1999b). Načrtovanje posegov elektrokemoterapije in netermičnega odstranjevanja tkiva z ireverzibilno elektroporacijo Pri zdravljenju tumorjev z elektroporacijo lahko uporabimo standardne oblike in postavitve elektrod z že določenimi parametri električnih pulzov (Marty et al. 2006Mir et al. 2006Campana et al. 2014). Če zdravimo velike tumorje ali tumorje nepravilnih oblik, ki pogosto ležijo globlje, s standardno postavitvijo elektrod ne moremo zagotoviti ustrezne pokritosti tumorja z dovolj visokim električnim poljem. V tem primeru lahko elektrode med samim posegom večkrat premaknemo ali pa prilagodimo njihovo Å”tevilo in postavitev. Pri tem moramo prej pripraviti načrt posega (Kos et al. 2010Miklavčič et al. 2010Pavliha et al. 2012Linnert et al. 2012Edhemović et al. 2014). V njem zagotovimo, da bo cel tumor izpostavljen dovolj visokemu električnemu polju (Miklavčič et al. 2006a), obenem pa Å”koda na okoliÅ”kem tkivu minimalna. Načrtovanje posega poteka v več korakih: 1. zajem medicinskih slik (računalniÅ”ka tomografija, magnetna resonanca) tumorja in okoliÅ”kega tkiva2. obdelava slik3. razgradnja slik in določitev geometrije tkiva4. vzpostavitev tridimenzionalnega modela5. optimizacija postavitve elektrod glede na obliko in velikost tumorja6. izdelava modela elektroporacije (izračun električnega polja in spremembe električne prevodnosti tkiva)7. optimizacija napetosti med elektrodami in položaja elektrod (Pavliha et al. 2012). Na sliki 1 lahko vidimo izračunano električno polje v tumorju in okoliÅ”kem tkivu pri eni izmed možnih postavitev elektrod.Electroporation is a phenomenon, which occurs when short high voltage pulses are applied to cells and tissues resulting in a transient increase in membrane permeability or cell death, presumably due to pore formation. If cells recover after pulse application, this is reversible electroporation. If cells die, this is irreversible electroporation. Electroporation is used in biotechnology for biocompound extraction and cryopreservation, in food processing for sterilization and pasteurization of liquid food and in medicine for treating tumors by electrochemotherapy or irreversible electroporation as an ablation technique, for gene electrotransfer, transdermal drug delivery, DNA vaccination, and cell fusion. In electroporation-based medical treatments, we can treat tumors with predefined electrode geometry and parameters of electric pulses. When we treat larger tumors of irregular shape treatment plan of the position of the electrodes and parameters of the electric pulses has to be calculated before each treatment to assure coverage of the tumor with a sufficient electric field. In treatment plans, currently, 1) we assume that above an experimentally determined critical electric field all cells are affected and below not, although, in reality, the transition between non-electroporated and electroporated state is continuous. 2) We do not take into account the excitability of some tissues. 3) The increase in tissuesā€™ conductivity is described phenomenologically and does not include mechanisms of electroporation. 4) Transport of chemotherapeutics into the tumor cells in electrochemotherapy treatments is not included in the treatment plan although it is vital for a successful treatment. We focused on the mathematical and numerical models of electroporation with the aim of including them in the treatment planning of electroporation-based medical treatments. We aimed to model processes happening during electroporation of tissues, relevant in the clinical procedures, by taking into account processes happening at the single cell level. First, we used mathematical models of cell membrane permeability and cell death which are phenomenological descriptions of experimental data. The models were chosen on the basis of the best fit with the experimental data. However, they did not include mechanisms of electroporation, and their transferability to tissues was questionable. We modeled time dynamics of dye uptake due to increased cell membrane permeability in several electroporation buffers with regard to the electrosensitization, i.e., delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. We also modeled the strength-duration depolarization curve and cell membrane permeability curve of excitable and non-excitable cell lines which could be used to optimize pulse parameters to achieve maximal drug uptake at minimal tissue excitation. Second, we modeled change in dielectric properties of tissues during electroporation. Model of change in dielectric properties of tissues was built for skin and validated with current-voltage measurements. Dielectric properties of separate layers of skin before electroporation were determined by taking into account geometric and dielectric properties of single cells, i.e., keratinocytes, corneocytes. Dielectric properties of separate layers during electroporation were obtained from cell-level models of pore formation on single cells of lower skin layers (keratinocytes in epidermis and lipid spheres in papillary dermis) and local transport region formation in the stratum corneum. Current-voltage measurements of long low-voltage pulses were accurately described taking into account local transport region formation, pore formation in the cells of lower layers and electrode polarization. Voltage measurements of short high-voltage pulses were also accurately described in a similar way as with long low-voltage pulseshowever, the model underestimated the current, probably due to electrochemical reactions taking place at the electrode-electrolyte interface. Third, we modeled the transport of chemotherapeutics during electrochemotherapy in vivo. In electrochemotherapy treatments, transport of chemotherapeutics in sufficient amounts into the cell is vital for a successful treatment. We performed experiments in vitro and measured the intracellular platinum mass as a function of pulse number and electric field by inductively coupled plasma ā€“ mass spectrometry. Using the dualporosity model, we calculated the in vitro permeability coefficient as a function of electric field and number of applied pulses. The in vitro determined permeability coefficient was then used in the numerical model of mouse melanoma tumor to describe the transport of cisplatin to the tumor cells. We took into account the differences in the transport of cisplatin in vitro and in vivo caused by the decreased mobility of molecules and decreased membrane area available for the uptake in vivo due to the high volume fraction of cells, the presence of cell matrix and close cell connections. Our model accurately described the experimental results obtained in electrochemotherapy of tumors and could be used to predict the efficiency of electrochemotherapy in vitro thus reducing the number of needed animal experiments. In the thesis, we connected the models at the cell level to the models at the tissue level with respect to cell membrane permeability and depolarization, cell death, change in dielectric properties and transport. Our models offer a step forward in modeling and understanding electroporation at the tissue level. In future, our models could be used to improve treatment planning of electroporation-based medical treatments

    Authentic leadership, employeesā€™ job satisfaction, and work engagement: a hierarchical linear modelling approach

    Get PDF
    The purpose of this study is to develop and test empirically a multilevel model of cross-level interactions between authentic leadership at the team level and job satisfaction and work engagement at the individual level. Using data from 23 team supervisors and 289 team members, the study also investigates the mediating role of perceived supervisor support in the proposed cross-level relationships. For validation of the measurement instrument, we first applied confirmatory factor analysis using LISREL 8.80 software. The hierarchical linear modelling analysis demonstrated a positive relationship between authentic leadership, employeesā€™ job satisfaction, and work engagement. In addition, the relationship between authentic leadership and job satisfaction is fully mediated by perceived supervisor support, whereas we have also found support for partial mediation of perceived supervisor support in the relationship between authentic leadership and employeesā€™ work engagement. A key originality and the theoretical and methodological contribution of this study lies in a multilevel approach that builds upon a sample of leaders and a number of their followers. We also address managerial implications and discuss future research suggestions

    Oxidative stress assays for disease risk stratification

    Get PDF
    Despite the fact that oxidative stress is a significant aetiological factor in several degenerative diseases, its measurement is rarely a part of "routine analyses" performed in hospital clinical chemistry laboratories. This situation is likely to change, as interest in this topic is increasing rapidly. Here we review the pertinent literature, with an assessment to assays for oxidative stress, and categorize them under: (i) assays for monitoring lipid peroxidation, (ii) assays for measuring oxidized amino acids, (iii) assays for measuring oxidized nucleic acids, (iv) assays based on physicochemical and immunological properties of oxidized low-density lipoprotein, and (v) assays for measuring the antioxidant capacity of body fluids and tissues. Our overview should be of help when choosing appropriate laboratory assays for oxidative stress and for routine disease risk stratification

    Exploratory and exploitative innovation: the moderating role of partner geographic diversity

    Get PDF
    The aim of this study is to explore the effect of exploratory and exploitative innovation separately and ambidexterity premise simultaneously relating to firmsā€™ innovation performance. To test these relationships, we applied a hierarchical linear regression analysis to a large sample of international organisations (by using the Community Innovation Survey [CIS] 2006 micro data). We show that the relationship between exploratory innovation and a firmā€™s innovation performance is moderated by geographically different partners. We found that ambidexterity premise in innovation context undermines innovation performance

    The influence of family income on studentsā€™ family resilience in Croatia

    Get PDF
    The study basically examines if there are differences in the factors of studentsā€™ family resilience regarding the level of their familiesā€™ income. Two additional hypotheses have also been tested, concerning influence of income level on studentsā€™ expression of problems and difficulties to family members and on religiosity. The study has been done on a sample of students from the Faculty of Educational Sciences of the Juraj Dobrila University of Pula, Croatia. The results have shown that students from families with no income or below-average income, are likely forbidden to show certain emotions in their family. On the other hand, students from average or above-average income families consider the fact that everyone can ā€˜ventā€™ without upsetting the others and is able to discuss problems until the solution is found as a significant factor of family resilience. The hypothesis concerning relationship between religion and income has not been confirmed. The average family income was taken from publicly available databases. The category of family income and decisions about its spending is very important for the quality of life, but also for communication within the family. The results offer guidelines for interventions which encourage family involvement, especially in financial contributions to their childrenā€™s wellbeing

    Oxidative stress assays for disease risk stratification

    Get PDF
    Despite the fact that oxidative stress is a significant aetiological factor in several degenerative diseases, its measurement is rarely a part of "routine analyses" performed in hospital clinical chemistry laboratories. This situation is likely to change, as interest in this topic is increasing rapidly. Here we review the pertinent literature, with an assessment to assays for oxidative stress, and categorize them under: (i) assays for monitoring lipid peroxidation, (ii) assays for measuring oxidized amino acids, (iii) assays for measuring oxidized nucleic acids, (iv) assays based on physicochemical and immunological properties of oxidized low-density lipoprotein, and (v) assays for measuring the antioxidant capacity of body fluids and tissues. Our overview should be of help when choosing appropriate laboratory assays for oxidative stress and for routine disease risk stratification
    • ā€¦
    corecore