34 research outputs found

    Long Noncoding RNAs Usher In a New Era in the Biology of Enhancers

    Get PDF
    Enhancer-associated long noncoding RNAs act over long distances and across chromosomes to activate transcription at distal promoters. Here, we address the latest advances made toward understanding the role of long noncoding RNA expression and the involvement of these RNAs in enhancer function through association with protein factors and modulation of chromatin structure

    Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington's disease mice.

    Full text link
    N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington's disease (HD) mice and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hippocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD

    Long non-coding RNAs and enhancers

    No full text
    Long non-coding RNAs (ncRNAs) are emerging as important regulatory factors in mammalian genomics. A number of reports within the last 2 years have identified thousands of actively expressed long ncRNA transcripts with distinct properties. The long ncRNAs show differential expression patterns and regulation in a wide variety of cells and tissues, adding significant complexity to the understanding of their biological role. Furthermore, genome-wide studies of transcriptional enhancers based on chromatin modifications and enhancer binding proteins have led to the identification of putative enhancers and provided insight into their tissue-specific regulation of gene expression. In an exciting turn of events, new evidence is indicating that long ncRNAs are associated with enhancer regions and that such non-coding transcription correlate with the increased activity of the neighboring genes. Moreover, additional experiments suggest that enhancer-function can be mediated through a transcribed long ncRNA and that this might be a common function for long ncRNAs. Here, we review recent advances made both in the genome-wide characterization of enhancers and in the identification of new classes of long ncRNAs, and discuss the functional overlap of these two classes of regulatory elements

    Molecular mechanisms of long ncRNAs in neurological disorders

    Get PDF
    Long non-coding RNAs (ncRNAs) have added an unexpected layer of complexity in the regulation of gene expression. Mounting evidence now links long ncRNAs to fundamental biological processes such as development and differentiation, and recent research shows important involvement of long ncRNAs in a variety of diseases including neurodegenerative disorders, such as Parkinson’s, Alzheimer’s, spinocerebellar ataxia and Huntington’s diseases. Furthermore, long ncRNAs are speculated to be implicated in development of psychiatric disorders such as schizophrenia and bipolar disorders. Long ncRNAs contribute to these disorders in diverse ways, from regulation of transcription to modulation of RNA processing and translation. In this review, we describe the diverse mechanisms reported for long ncRNAs, and discuss how they could mechanistically be involved in the development of neurological disorders
    corecore