4 research outputs found

    Occurrence and diversity of black-foot pathogens on asymptomatic nursery-produced grapevines in Turkiye

    Full text link
    [EN] Black-foot (BF) disease of grapevines in nurseries and young vineyards is caused by soil-borne Cylindrocarpon-like asexual morphs. They can be found both in symptomatic and asymptomatic vines, being spread to new grape growing areas during vineyard establishment. In this study, 42 grapevine nurseries located in different geographical regions in Turkiye were surveyed in 2021 to determine the presence of BF pathogens on asymptomatic marketable plants. Black-foot fungi were isolated from the roots or basal ends of asymptomatic dormant vines in 39 of the nurseries (92.9%). The percentage of isolation of BF pathogens ranged from 1.4 to 51.4% (average 18.4%). Seven species: Cylindrodendrum alicantinum, Cylindrocladiella peruviana, Dactylonectria macrodidyma, D. novozelandica, D. torresensis, Ilyonectria liriodendri, and I. robusta were identified based on DNA sequencing of histone H3 gene and phylogenetic analyses, D. torresensis being the most frequent. From these species Ca. peruviana, D. novozelandica and I. robusta were detected for the first time on grapevines in Turkiye. Pathogenicity tests on 1103P rootstock cuttings revealed that all species significantly decreased root biomass and increased root disease severity index, when compared with the non-inoculated control, D. novozelandica being the most virulent. Pathogenicity of Cm. alicantinum to grapevine was confirmed for the first time, thus this species should be included as causal agent of BF of grapevines. These findings point out that BF pathogens are highly prevalent in the nurseries and could represent a serious threat for Turkish viticulture.Akgül, DS.; Yildiz, M.; Savas, NG.; Bülbül, I.; Özarslandan, M.; León Santana, M.; Armengol Fortí, J. (2022). Occurrence and diversity of black-foot pathogens on asymptomatic nursery-produced grapevines in Turkiye. European Journal of Plant Pathology. 164(1):21-32. https://doi.org/10.1007/s10658-022-02535-521321641Abreo, E., Martínez, S., Betucci, L., & Lupo, S. (2010). Morphological and molecular characterization of Campylocarpon and Cylindrocarpon spp. associated with black foot disease of grapevines in Uruguay. Australasian Plant Pathology, 39, 446–452. https://doi.org/10.1071/AP10021Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: An update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261. https://doi.org/10.14601/Phytopathol_Mediterr-12662.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112. https://doi.org/10.1007/s10658-013-0221-8Agustí-Brisach, C., Cabral, A., González-Domínguez, E., Pérez-Sierra, A., León, M., Abad-Campos, P., García-Jiménez, J., Oliveira, H., & Armengol, J. (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov. European Journal of Plant Pathology, 145(1), 103–118. https://doi.org/10.1007/s10658-015-0820-7Aiello, D., Gusella, G., Vitale, A., Guarnaccia, V., & Polizzi, G. (2020). Cylindrocladiella peruviana and Pleiocarpon algeriense causing stem and crown rot on avocado (Persea americana). European Journal of Plant Pathology, 158(2), 419–430. https://doi.org/10.1007/s10658-020-02082-xAigoun-Mouhous, W., Elena, G., Cabral, A., Leon, M., Sabaou, N., Armengol, J., Chaouia, C., & Mahamedi, & Berraf-Tebbal, A. (2019). Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. European Journal of Plant Pathology, 154, 887–901. https://doi.org/10.1007/s10658-019-01708-zAkgül, D. S., Savaş, N. G., Önder, S., Özben, S., & Kaymak, S. (2014). First report of Campylocarpon fasciculare causing black foot disease of grapevine in Turkey. Plant Disease, 98(9), 1277. https://doi.org/10.1094/PDIS-03-14-0284-PDNAlaniz, S., Leon, M., García-Jiménez, J., Abad, P., & Armengol, J. (2007). Characterization of Cylindrocarpon species associated with black-foot disease of grapevine in Spain. Plant Disease, 91, 1187–1193. https://doi.org/10.1094/PDIS-91-9-1187Alaniz, S., Abad-Campos, P., García-Jiménez, J., & Armengol, J. (2011). Evaluation of fungicides to control Cylindrocarpon liriodendri and Cylindrocarpon macrodidymum in vitro, and their effect during the rooting phase in the grapevine propagation process. Crop Protection, 30, 489–494. https://doi.org/10.1016/j.cropro.2010.12.020Berlanas, C., Ojeda, S., López-Manzanares, B., Andrés-Sodupe, M., Bujanda, R., Martinez-Diz, M. D. P., Diaz-Losada, E., & Gramaje, D. (2020). Occurrence and diversity of black-foot disease fungi in symptomless grapevine nursery stock in Spain. Plant Disease, 104, 94–104. https://doi.org/10.1094/PDIS-03-19-0484-RECabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012). Cylindrocarpon root rot: Multi-gene analysis reveals novel species within the Ilyonectria radicicola species -complex. Mycological Progress, 11, 655–668. https://doi.org/10.1007/s11557-011-0777-7Carlucci, A., Lops, F., Mostert, L., Halleen, F., & Raimondo, M.L. (2017). Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea, 56, 10–39. https://doi.org/10.14601/Phytopathol_Mediterr-18769.Crous, P. W., Groenewald, J. Z., Risede, J. M., & Hywel-Jones, N. L. (2004). Calonectria species and their Cylindrocladium anamorphs: Species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–429.Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.Fischer, M., & Kassemeyer, H. H. (2003). Fungi associated with esca disease of grapevine in Germany. Vitis, 42, 109–116. https://doi.org/10.5073/vitis.2003.42.109-116Gatica, M., Césari, C., Magnin, S., & Dupont, J. (2001). Phaeoacremonium species and Phaeomoniella chlamydospora in vines showing “hoja de malvón” and young vine decline symptoms in Argentina. Phytopathologia Mediterranea, 40, 317–324 https://www.jstor.org/stable/44981636Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Wiley 680 pp.Gramaje, D., & Armengol, J. (2011). Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Disease, 95, 1040–1055. https://doi.org/10.1094/PDIS-01-11-0025Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Disease, 102, 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FEGrasso, S., & Magnano Di San Lio, G. (1975). Infezioni di Cylindrocarpon obtusisporum su piante di vite in Sicilia. Vitis, 14, 38–39.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black-foot disease of grapevines (Vitis spp). Studies in Mycology, 50, 431–455.Halleen, F., Fourie, P. H., & Crous, P. W. (2006). A review of black foot disease of grapevine. Phytopatologia Mediterranea, 45, 55–67 https://www.jstor.org/stable/26463236Jones, E. E., Brown, D. S., Bleach, C. M., Pathrose, B., Barclay, C., Jaspers, M. V., & Ridgway, H. J. (2012). First report of Cylindrocladiella parva as a grapevine pathogen in New Zealand. Plant Disease, 96, 144. https://doi.org/10.1094/PDIS-04-11-0347Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096Langenhoven, S.D., Halleen F., Spies, C.F.J., Stempien, E., & Mostert, L. (2018). Detection and quantification of black foot and crown and root rot pathogens in grapevine nursery soils in the Western cape of South Africa. Phytopathologia Mediterranea, 57, 519–537. https://doi.org/10.14601/Phytopathol_Mediterr-23921.Lawrence, D. P., Nouri, M. T., & Trouillas, F. P. (2019). Taxonomy and multi-locus phylogeny of Cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California. Fungal Systematics and Evolution, 4, 59–75. https://doi.org/10.3114/fuse.2019.04.06Maluta, D. R., & Larignon, P. (1991). Pied-noir: mieux vaut prévenir. Viticulture, 11, 71–72.Mohammadi, H., Alaniz, S., Banihashemi, Z., & Armengol, J. (2009). Characterization of Cylindrocarpon liriodendri associated with black foot disease of grapevine in Iran. Journal of Phytopathology, 157, 642–645. https://doi.org/10.1111/j.1439-0434.2009.01555.xO’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90(3), 465–493. https://doi.org/10.2307/3761407Özben, S. (2020). Asma fidanlıklarında önemli odun dokusu fungal hastalıkların tespiti ve bazı üzüm çeşitlerinin Phaeoacremonium aleophilum’a karşı reaksiyonlarının belirlenmesi. PhD Thesis (in Turkish), Ankara University, Graduate School of Natural and Applied Science, Turkey. 175 pp.Özben, S., Demirci, F., Degirmenci, K., & Uzunok, S. (2012). First report of Cylindrocarpon macrodidymum associated with black foot disease of grapevine in Turkiye. Plant Disease, 96, 762. https://doi.org/10.1094/pdis-05-11-0393-pdnÖzben, S., Demirci, F., & Uzunok, S. (2019). First report of Cylindrocladiella parva associated with black foot disease of grapevine in Turkiye. 1st International Molecular Plant Protection Congress, 96 pp. Adana, .Petit, E., Barriault, E., Baumgartner, K., Wilcox, W. F., & Rolshausen, P. E. (2011). Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. American Journal of Enology and Viticulture, 62, 177–183. https://doi.org/10.5344/ajev.2011.10112Pintos, C., Redondo, V., Costas, D., Aguin, O., & Mansilla, P. (2018). Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathologia Mediterranea, 57, 407–424. https://doi.org/10.14601/Phytopathol_Mediterr-22964.Rego, C., Nascimento, T., & Oliviera, H. (2001). Characterization of Cylindrocarpon destructans isolates from grapevines in Portugal. Phytopathologia Mediterranea, 40, 343-350. https://doi.org/10.14601/Phytopathol_Mediterr-1614.Reis, P., Cabral, A., Nascimento, T., Oliviera, H., & Rego, C. (2013). Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathologia Mediterranea, 52, 335-346. https://doi.org/10.14601/Phytopathol_Mediterr-12719.Savaş, N., Akgül, D. S., & Albaz, E. A. (2015). First report of Ilyonectria liriodendri associated with black foot disease of grapevine in Turkey. Plant Disease, 99, 1855. https://doi.org/10.1094/PDIS-03-15-0246-PDNSavaş, N., Akgül, D. S., Özarslandan, M., & Yıldız, M. (2020). First report of Dactylonectria alcacerensis and Dactylonectria torresensis associated with black foot disease of grapevine in Turkey. Plant Disease, 104, 2027. https://doi.org/10.1094/PDIS-02-20-0385-PDNStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1007/978-1-4020-6754-9_3188Towsend, G. R., & Heuberger, J. V. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 24, 340–343.Whitelaw-Weckerd, M. A., Nair, N. G., Lamont, R., Alonso, M., Priest, M. J., & Huang, R. (2007). Root infection of Vitis vinifera by Cylindrocarpon liriodendri in Australia. Australasian Plant Pathology, 36, 403–406. https://doi.org/10.1071/AP07041Ye, Q., Zhang, W., Jia, J., Li, X., Zhou, Y., Han, C., Wu, X., & Yan, J. (2021) Fungal pathogens associated with black foot of grapevine in China. Phytopathologia Mediterranea, 60(2), 303-319. https://doi.org/10.36253/phyto-12353

    Buğday genotiplerinin tahıl kist nematodu, heterodera filipjevi (madzhidov) stelter populasyonlarına karşı dayanıklılıklarının araştırılması

    No full text
    TEZ7034Tez (Yüksek Lisans) -- Çukurova Üniversitesi, Adana, 2008.Kaynakça (s.40-47) var.vii, 48 s. : rnk.res. ; 29 cm.The international pathotype differential lines were used to determine the pathotype group of Heterodera filipjevi population collected from Yozgat province, Turkey. The reaction of H. filipjevi Yozgat population on the differential lines indicated they were different than the other 5 known H. filipjevi pathotypes from Sweden, Futherwork was conducted with these H. filipjevi populations to assess the usabilitiy of known published Cereal Cyst Nematode (CCN) resistance genes against a closely related species and pathotypes of H. avenae. Several of these wheat lines known to possess resistance against H. avenae pathotypes and also the Haymana H. filipjevi populations did not exhibit resistance against H. filipjevi Yozgat populations. Two known resistance genes for CCN (Cre1 and Cre5) were transferred from hexaploid bread wheat to tetraploid Durum wheat in CIMMYT Mexico to establish if their resistance would be effective in the tetraploid background. These lines were screened against both H. filipjevi Yozgat and Haymana populations. Results indicated there was no relationship to the resistance whether the gene was present or not (by marker confirmed studies in CIMMYT Mexico). Furthermore, as with the international pathotype differential, the reaction of Yozgat and Haymana isolates with these lines was often different. The results of these two experiments suggest that H. filipjevi has different pathotypes in Turkey which requires further confirmation.Bu çalışmada Orta Anadolu Bölgesi'nden elde edilen Heterodera filipjevi Yozgat populasyonunun patotipinin belirlenmesi amacıyla uluslararası patotip ayrım hatları denemeye alınmıştır. H. filipjevi Yozgat populasyonunun patotip ayrım hatlarında gösterdikleri reaksiyonun, bu türün bilinen 5 patotipinden farklı olduğu saptanmıştır. Bu çalışmada kist nematodlarına karşı dayanıklı Cre genleri taşıyan tahıl hatlarının, H. avenae ve H. filipjevi Haymana populasyonuna karşı literatürde bildirilen dayanıklılık durumları ile H. filipjevi Yozgat populasyonunun aynı hatlarda gelişip çoğalma durumları karşılaştırılmıştır. Dünyada H. avenae patotiplerine ve Türkiye'de H. filipjevi Haymana populasyonuna karşı dayanıklı olan bazı hatların H. filipjevi Yozgat populasyonuna karşı aynı dayanıklılığı sağlayamadığı bulunmuştur. Bu çalışmada ayrıca, CIMMYT-Meksika tarafından hexaploid ekmeklik buğday çeşitlerinde bulunan ve Tahıl kist nematodlarına karşı dayanıklılığı sağlayan Cre 1 ve Cre 5 genlerinin aktarıldığı tetraploid makarnalık buğday çeşitlerinde H. Filipjevi Yozgat ve H. filipjevi Haymana populasyonunun gelişme durumu incelenmiş, her iki populasyonun dayanıklı gen taşıyan makarnalık buğday hatlarına karşı reaksiyonlarının birbirlerinden farklı oldukları saptanmıştır. Bu sonuçlar ışığında H. filipjevi Yozgat populasyonunun literatürde bu türün bilinen patotiplerinden ve H. filipjevi Haymana populasyonundan ayrı bir patotip olduğu ileri sürülmektedir.Bu çalışma Ç.Ü. Bilimsel Araştırma Projeleri Birimi Tarafından Desteklenmiştir. Proje No:ZM2007YL17 TÜBİTAK KAMAG 1005G01

    Determination of the pathotype group of Heterodera filipjevi (Madzhidov,1981)population and resistance of H. populations against wheat genotypes

    No full text
    Bu çalışmada Orta Anadolu Bölgesi'nden elde edilen Heterodera filipjevi (Madzhidov, 1981) Steller Yozgat populasyonunun patotipinin belirlenmesi amacıyla uluslararası patotip ayrım hatları denemeye alınmıştır. H. filipjevi Yozgat populasyonunun patotip ayrım hatlarında gösterdiği reaksiyon, bu türün bilinen 5 patotipinden farklıdır. Bu çalışmada kist nematodlarına karşı dayanıklı Cre genleri taşıyan tahıl hatlarının, Heterodera avenae Wollenweber, 1924 ve H. filipjevi Haymana populasyonuna karşı literatürde bildirilen dayanıklılık durumları ile H. filipjevi Yozgat populasyonunun aynı hatlarda gelişip çoğalma durumları karşılaştırılmıştır. Dünyada H. avenae patotiplerine ve Türkiye'de H. filipjevi Haymana populasyonuna karşı dayanıklı olan bazı hatların H. filipjevi Yozgat populasyonuna karşı aynı dayanıklılığı sağlayamadığı tespit edilmiştir.Bu çalışmada Orta Anadolu Bölgesi’nden elde edilen Heterodera filipjevi (Madzhidov, 1981) Steller Yozgat populasyonunun patotipinin belirlenmesi amacıyla uluslararası patotip ayrım hatları denemeye alınmıştır. H. filipjevi Yozgat populasyonunun patotip ayrım hatlarında gösterdiği reaksiyon, bu türün bilinen 5 patotipinden farklıdır. Bu çalışmada kist nematodlarına karşı dayanıklı Cre genleri taşıyan tahıl hatlarının, Heterodera avenae Wollenweber, 1924 ve H. filipjevi Haymana populasyonuna karşı literatürde bildirilen dayanıklılık durumları ile H. filipjevi Yozgat populasyonunun aynı hatlarda gelişip çoğalma durumları karşılaştırılmıştır. Dünyada H. avenae patotiplerine ve Türkiye’de H. filipjevi Haymana populasyonuna karşı dayanıklı olan bazı hatların H. filipjevi Yozgat populasyonuna karşı aynı dayanıklılığı sağlayamadığı tespit edilmiştir

    Molecular Identification and Pathogenicity of <i>Fusarium</i> Species Associated with Wood Canker, Root and Basal Rot in Turkish Grapevine Nurseries

    No full text
    Fusarium species are agriculturally important fungi with a broad host range and can be found as endophytic, pathogenic, or opportunistic parasites in many crop plants. This study aimed to identify Fusarium species in bare-rooted, dormant plants in Turkish grapevine nurseries using molecular identification methods and assess their pathogenicity. Asymptomatic dormant plants were sampled from grapevine nurseries (43) in different regions of the country, and fungi were isolated from plant roots and internal basal tissues. The Fusarium strains were identified by performing gene sequencing (TEF1-α, RPB2) and phylogenetic analyses. Pathogenicity tests were carried out by inoculating mycelial agar pieces of strains onto the stem or conidial suspensions into the rhizosphere of vines (1103 Paulsen rootstock). Laboratory tests revealed that Fusarium species were highly prevalent in Turkish grapevine nurseries (41 out of 43). Gene sequencing and phylogenetic analyses unraveled that 12 Fusarium species (F. annulatum, F. brachygibbosum, F. clavum, F. curvatum, F. falciforme, F. fredkrugeri, F. glycines, F. nanum, F. nematophilum, F. nirenbergiae, F. solani, and Fusarium spp.) existed in the ready-to-sale plants. Some of these species (F. annulatum, F. curvatum and F. nirenbergiae) consistently caused wood necrosis of seedling stems, rotting of the basal zone and roots, and reduced root biomass. Although the other nine species also caused some root rot and root reduction, their virulence was not as severe as the pathogenic ones, and they were considered opportunistic parasites or endophytic species. This study suggests that Fusarium species might play an important role in root-basal rot, wood canker symptoms, and young vine decline in Turkish grapevine nurseries and that these species need to be considered for healthy seedling production
    corecore