8 research outputs found

    The effect of 3-Methyl 1-Pentyn 3-ol on the corrosion of Al-Si-Cu alloys in acid solutions by using SEM, EDX and AAS

    Get PDF
    In this study, the effect of alloying elements on the corrosion of Al-Si-Cu alloys in H 2 SO 4 and HCl media content 3-methyl–1pentyn–3-ol (3mlp3ol) is investigated by using SEM, EDX, AAS. The effect of active elements and 3-methyl–1-pentyn–3-ol (inhibitor) on the corrosion of alloys is determined using SEM, EDX and AAS results. Experimental results which indicated active alloying elements are Cu, Zn, Mg for Al-Si-Cu alloys in the studied solutions

    Targeting SARS-CoV-2 Nsp12/Nsp8 interaction interface with approved and investigational drugs: anin silicostructure-based approach

    Get PDF
    In this study, the Nsp12-Nsp8 complex of SARS-CoV-2 was targeted with structure-based and computer-aided drug design approach because of its vital role in viral replication. Sequence analysis of RNA-dependent RNA polymerase (Nsp12) sequences from 30,366 different isolates were analysed for possible mutations. FDA-approved and investigational drugs were screened for interaction with both mutant and wild-type Nsp12-Nsp8 interfaces. Sequence analysis revealed that 70.42% of Nsp12 sequences showed conserved P323L mutation, located in the Nsp8 binding cleft. Compounds were screened for interface interaction, any with XP GScores lower than -7.0 kcal/mol were considered as possible interface inhibitors. RX-3117 (fluorocyclopentenyl cytosine) and Nebivolol had the highest binding affinities in both mutant and wild-type enzymes, therefore they were selected and resultant protein-ligand complexes were simulated for analysis of stability over 100 ns. Although the selected ligands had partial mobility in the binding cavity, they were not removed from the binding pocket after 100 ns. The ligand RX-3117 remained in the same position in the binding pocket of the mutant and wild-type enzyme after 100 ns MD simulation. However, the ligand Nebivolol folded and embedded in the binding pocket of mutant Nsp12 protein. Overall, FDA-approved and investigational drugs are able to bind to the Nsp12-Nsp8 interaction interface and prevent the formation of the Nsp12-Nsp8 complex. Interruption of viral replication by drugs proposed in this study should be further tested to pave the way forin vivostudies towards the treatment of COVID-19

    Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13)

    Get PDF
    SARS-CoV-2 has caused COVID-19 outbreak with nearly 2 M infected people and over 100K death worldwide, until middle of April 2020. There is no confirmed drug for the treatment of COVID-19 yet. As the disease spread fast and threaten human life, repositioning of FDA approved drugs may provide fast options for treatment. In this aspect, structure-based drug design could be applied as a powerful approach in distinguishing the viral drug target regions from the host. Evaluation of variations in SARS-CoV-2 genome may ease finding specific drug targets in the viral genome. In this study, 3458 SARS-CoV-2 genome sequences isolated from all around the world were analyzed. Incidence of C17747T and A17858G mutations were observed to be much higher than others and they were on Nsp13, a vital enzyme of SARS-CoV-2. Effect of these mutations was evaluated on protein-drug interactions using in silico methods. The most potent drugs were found to interact with the key and neighbor residues of the active site responsible from ATP hydrolysis. As result, cangrelor, fludarabine, folic acid and polydatin were determined to be the most potent drugs which have potency to inhibit both the wild type and mutant SARS-CoV-2 helicase. Clinical data supporting these findings would be important towards overcoming COVID-19

    Kinetic Analysis of the Amino Terminal End of Active Site Loop of Lactate Deyhdrogenase from Plasmodium Vivax

    No full text
    Objective: In this study, kinetic analysis was performed to understand the functional importance of the amino terminal of the active site of previously mutated Plasmodium vivax Lactate Dehydrogenase enzyme by mimicking Toxoplasma gondii I, II, Eimeria acervulina and Eimeria tenella LDH’s.Material and Methods: Mutant LDH genes were amplified by PCR and 6xHistag was added to the C-terminal of the enzymes. Then LDH enzymes are overproduced as recombinant in E. coli cells, purified by Ni-NTA agarose matrix and kinetic properties were analysed. Results: Observing increase of Km values of mutant enzymes showed that mutations in this place caused decreasing affinity of enzyme for its substrate. However kcat values were about the same throughout all mutant proteins. Conclusion: Sensitivity of the studied region emphasizes the significance of this site for drug design studies for both Plasmodium and some other Apicomplexans

    Hit identification against peptidyl-prolyl isomerase of Theileria annulata by combined virtual high-throughput screening and molecular dynamics simulation approach

    No full text
    The numerical calculations reported in this paper were fully/partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance. In this study, potential TaPIN1 inhibitors were investigated using a library of naphthoquinone derivatives. Comparative models of mutant (m) and wild type (wt) TaPIN1 were predicted and energy minimization was followed by structure validation. A naphthoquinone (hydroxynaphthalene-1,2-dione, hydroxynaphthalene-1,4-dione) and hydroxynaphthalene-2,3-dione library was screened by Schrödinger Glide HTVS, SP and XP docking methodologies and the docked compounds were ranked by the Glide XP scoring function. The two highest ranked docked compounds Compound 1 (4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynaphthalene-1,2-dione) and Compound 2 (6-acetyl-1,4,5,7,8-pentahydroxynaphthalene-2,3-dione) were used for further molecular dynamics (MD) simulation studies. The MD results showed that ligand Compound 1 was located in the active site of both mTaPIN1 and wtTaPIN1 and could be proposed as a potential inhibitor by acting as a substrate antagonist. However, ligand Compound 2 was displaced away from the binding pocket of wtTaPIN1 but was located near the active site binding pocket of mTaPIN1 suggesting that could be selectively evaluated as a potential inhibitor against the mTaPIN1. Compound 1 and Compound 2 ligands are potential inhibitors but Compound 2 is suggested as a better inhibitor for mTaPIN1. These ligands could also further evaluated as potential inhibitors against human peptidyl prolyl isomerase which causes cancer in humans by using the same mechanism as TaPIN1

    Single Mutation in Shine-Dalgarno-Like Sequence Present in the Amino Terminal of Lactate Dehydrogenase of Plasmodium Effects the Production of an Eukaryotic Protein Expressed in a Prokaryotic System

    No full text
    One of the most important step in structure-based drug design studies is obtaining the protein in active form after cloning the target gene. In one of our previous study, it was determined that an internal Shine-Dalgarno-like sequence present just before the third methionine at N-terminus of wild type lactate dehydrogenase enzyme of Plasmodium falciparum prevent the translation of full length protein. Inspection of the same region in P. vivax LDH, which was overproduced as an active enzyme, indicated that the codon preference in the same region was slightly different than the codon preference of wild type PfLDH. In this study, 5'-GGAGGC-3' sequence of P. vivax that codes for two glycine residues just before the third methionine was exchanged to 5'-GGAGGA-3', by mimicking P. falciparum LDH, to prove the possible effects of having an internal SD-like sequence when expressing an eukaryotic protein in a prokaryotic system. Exchange was made by site-directed mutagenesis. Results indicated that having two glycine residues with an internal SD-like sequence (GGAGGA) just before the third methionine abolishes the enzyme activity due to the preference of the prokaryotic system used for the expression. This study emphasizes the awareness of use of a prokaryotic system to overproduce an eukaryotic protein

    Heterologous expression, biochemical characterisation and computational analysis of Bacteroides fragilis enolase

    No full text
    Bacteriodes fragilis is an anaerobic bacterium found in the human intestinal flora. In this study, BfEno was targeted with a structure-based drug design approach because inhibition of this enzyme may prevent both the aerobic and anaerobic pathways due to its role in the glycolytic pathway. First, the gene encoding BfEno was cloned, expressed and the protein produced over 95% purity. The Km and Vmax values of BfEno were determined as 314.9 µM and 256.2 µmol/min.mg, respectively. Drug-like chemicals were retrieved from the ZINC database for high-throughput virtual screening analyses. As a result of screening study, the ZINC91441604 has been proposed to bind to the active site of the enzyme and remain stable. The same compound exhibited weak binding to the human enolases than the bacterial enolase. Hence, ZINC91441604 may be proposed as a novel candidate for further in vitro and in vivo drug analysis towards the treatment of B. fragilis infections
    corecore