148 research outputs found

    Extremely large scale simulation of a Kardar-Parisi-Zhang model using graphics cards

    Full text link
    The octahedron model introduced recently has been implemented onto graphics cards, which permits extremely large scale simulations via binary lattice gases and bit coded algorithms. We confirm scaling behaviour belonging to the 2d Kardar-Parisi-Zhang universality class and find a surface growth exponent: beta=0.2415(15) on 2^17 x 2^17 systems, ruling out beta=1/4 suggested by field theory. The maximum speed-up with respect to a single CPU is 240. The steady state has been analysed by finite size scaling and a growth exponent alpha=0.393(4) is found. Correction to scaling exponents are computed and the power-spectrum density of the steady state is determined. We calculate the universal scaling functions, cumulants and show that the limit distribution can be obtained by the sizes considered. We provide numerical fitting for the small and large tail behaviour of the steady state scaling function of the interface width.Comment: 7 pages, 8 figures, slightly modified, accepted version for PR

    Mapping of 2+1-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimer

    Full text link
    We show that a 2+1 dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional conserved lattice gas model of directed dimers. In case of KPZ height anisotropy the dimers follow driven diffusive motion. We confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of the 2+1 dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-diffusion models, which allow much more efficient computer simulations.Comment: 5 pages, 4 figures, final form to appear in PR

    One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder

    Full text link
    Large-scale Monte Carlo simulations are used to explore the effect of quenched disorder on one dimensional, non-equilibrium kinetic Ising models with locally broken spin symmetry, at zero temperature (the symmetry is broken through spin-flip rates that differ for '+' and '-' spins). The model is found to exhibit a continuous phase transition to an absorbing state. The associated critical behavior is studied at zero branching rate of kinks, through analysis spreading of '+' and '-' spins and, of the kink density. Impurities exert a strong effect on the critical behavior only for a particular choice of parameters, corresponding to the strongly spin-anisotropic kinetic Ising model introduced by Majumdar et al. Typically, disorder effects become evident for impurity strengths such that diffusion is nearly blocked. In this regime, the critical behavior is similar to that arising, for example, in the one-dimensional diluted contact process, with Griffiths-like behavior for the kink density. We find variable cluster exponents, which obey a hyperscaling relation, and are similar to those reported by Cafiero et al. We also show that the isotropic two-component AB -> 0 model is insensitive to reaction-disorder, and that only logarithmic corrections arise, induced by strong disorder in the diffusion rate.Comment: 10 pages, 13 figures. Final, accepted form in PRE, including a new table summarizing the molde

    Single-site approximation for reaction-diffusion processes

    Full text link
    We consider the branching and annihilating random walk A→2AA\to 2A and 2A→02A\to 0 with reaction rates σ\sigma and λ\lambda, respectively, and hopping rate DD, and study the phase diagram in the (λ/D,σ/D)(\lambda/D,\sigma/D) plane. According to standard mean-field theory, this system is in an active state for all σ/D>0\sigma/D>0, and perturbative renormalization suggests that this mean-field result is valid for d>2d >2; however, nonperturbative renormalization predicts that for all dd there is a phase transition line to an absorbing state in the (λ/D,σ/D)(\lambda/D,\sigma/D) plane. We show here that a simple single-site approximation reproduces with minimal effort the nonperturbative phase diagram both qualitatively and quantitatively for all dimensions d>2d>2. We expect the approach to be useful for other reaction-diffusion processes involving absorbing state transitions.Comment: 15 pages, 2 figures, published versio

    Probability distribution of the order parameter in the directed percolation universality class

    Full text link
    The probability distributions of the order parameter for two models in the directed percolation universality class were evaluated. Monte Carlo simulations have been performed for the one-dimensional generalized contact process and the Domany-Kinzel cellular automaton. In both cases, the density of active sites was chosen as the order parameter. The criticality of those models was obtained by solely using the corresponding probability distribution function. It has been shown that the present method, which has been successfully employed in treating equilibrium systems, is indeed also useful in the study of nonequilibrium phase transitions.Comment: 6 pages, 4 figure

    Multicomponent binary spreading process

    Full text link
    I investigate numerically the phase transitions of two-component generalizations of binary spreading processes in one dimension. In these models pair annihilation: AA->0, BB->0, explicit particle diffusion and binary pair production processes compete with each other. Several versions with spatially different productions have been explored and shown that for the cases: 2A->3A, 2B->3B and 2A->2AB, 2B->2BA a phase transition occurs at zero production rate (σ=0\sigma=0), that belongs to the class of N-component, asymmetric branching and annihilating random walks, characterized by the order parameter exponent ÎČ=2\beta=2. In the model with particle production: AB->ABA, BA-> BAB a phase transition point can be located at σc=0.3253\sigma_c=0.3253 that belongs to the class of the one-component binary spreading processes.Comment: 5 pages, 5 figure

    The universal behavior of one-dimensional, multi-species branching and annihilating random walks with exclusion

    Full text link
    A directed percolation process with two symmetric particle species exhibiting exclusion in one dimension is investigated numerically. It is shown that if the species are coupled by branching (A→ABA\to AB, B→BAB\to BA) a continuous phase transition will appear at zero branching rate limit belonging to the same universality class as that of the dynamical two-offspring (2-BARW2) model. This class persists even if the branching is biased towards one of the species. If the two systems are not coupled by branching but hard-core interaction is allowed only the transition will occur at finite branching rate belonging to the usual 1+1 dimensional directed percolation class.Comment: 3 pages, 3 figures include

    Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

    Get PDF
    Extended dynamical simulations have been performed on a 2+1 dimensional driven dimer lattice gas model to estimate ageing properties. The auto-correlation and the auto-response functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the 2+1 dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.Comment: 6 pages, 5 figs, 1 table, accepted version in PR

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Slow, bursty dynamics as a consequence of quenched network topologies

    Get PDF
    Bursty dynamics of agents is shown to appear at criticality or in extended GrifïŹths phases, even in case of Poisson processes. I provide numerical evidence for a power-law type of intercommunication time distributions by simulating the contact process and the susceptible-infected-susceptible model. This observation suggests that in the case of nonstationary bursty systems, the observed non-Poissonian behavior can emerge as a consequence of an underlying hidden Poissonian network process, which is either critical or exhibits strong rare-region effects. On the contrary, in time-varying networks, rare-region effects do not cause deviation from the mean-ïŹeld behavior, and heterogeneity-induced burstyness is absent
    • 

    corecore