30 research outputs found

    Zero Krengel Entropy does not kill Poisson Entropy

    Get PDF
    We prove that the notions of Krengel entropy and Poisson entropy for infinite-measure-preserving transformations do not always coincide: We construct a conservative infinite-measure-preserving transformation with zero Krengel entropy (the induced transformation on a set of measure 1 is the Von Neumann-Kakutani odometer), but whose associated Poisson suspension has positive entropy

    Averaging along Uniform Random Integers

    Full text link
    Motivated by giving a meaning to "The probability that a random integer has initial digit d", we define a URI-set as a random set E of natural integers such that each n>0 belongs to E with probability 1/n, independently of other integers. This enables us to introduce two notions of densities on natural numbers: The URI-density, obtained by averaging along the elements of E, and the local URI-density, which we get by considering the k-th element of E and letting k go to infinity. We prove that the elements of E satisfy Benford's law, both in the sense of URI-density and in the sense of local URI-density. Moreover, if b_1 and b_2 are two multiplicatively independent integers, then the mantissae of a natural number in base b_1 and in base b_2 are independent. Connections of URI-density and local URI-density with other well-known notions of densities are established: Both are stronger than the natural density, and URI-density is equivalent to log-density. We also give a stochastic interpretation, in terms of URI-set, of the H_\infty-density

    Around King's Rank-One theorems: Flows and Z^n-actions

    Full text link
    We study the generalizations of Jonathan King's rank-one theorems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one R-actions (flows) and rank-one Z^n-actions. We prove that these results remain valid in the case of rank-one flows. In the case of rank-one Z^n actions, where counterexamples have already been given, we prove partial Weak-Closure Theorem and partial rigidity of factors

    A central limit theorem for the variation of the sum of digits

    Full text link
    We prove a Central Limit Theorem for probability measures defined via the variation of the sum-of-digits function, in base b2b\ge 2. For r0r\ge 0 and dZd \in \mathbb{Z}, we consider μ(r)(d)\mu^{(r)}(d) as the density of integers nNn\in \mathbb{N} for which the sum of digits increases by dd when we add rr to nn. We give a probabilistic interpretation of μ(r)\mu^{(r)} on the probability space given by the group of bb-adic integers equipped with the normalized Haar measure. We split the base-bb expansion of the integer rr into so-called "blocks", and we consider the asymptotic behaviour of μ(r)\mu^{(r)} as the number of blocks goes to infinity. We show that, up to renormalization, μ(r)\mu^{(r)} converges to the standard normal law as the number of blocks of rr grows to infinity. We provide an estimate of the speed of convergence. The proof relies, in particular, on a ϕ\phi-mixing process defined on the bb-adic integers

    Growth rate for the expected value of a generalized random Fibonacci sequence

    Get PDF
    A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability of a +), and the recurrence relation is of the form g_n = |\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When \lambda = \lambda_k = 2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author

    How do random Fibonacci sequences grow?

    Full text link
    We study two kinds of random Fibonacci sequences defined by F1=F2=1F_1=F_2=1 and for n1n\ge 1, Fn+2=Fn+1±FnF_{n+2} = F_{n+1} \pm F_{n} (linear case) or Fn+2=Fn+1±FnF_{n+2} = |F_{n+1} \pm F_{n}| (non-linear case), where each sign is independent and either + with probability pp or - with probability 1p1-p (0<p10<p\le 1). Our main result is that the exponential growth of FnF_n for 0<p10<p\le 1 (linear case) or for 1/3p11/3\le p\le 1 (non-linear case) is almost surely given by 0logxdνα(x),\int_0^\infty \log x d\nu_\alpha (x), where α\alpha is an explicit function of pp depending on the case we consider, and να\nu_\alpha is an explicit probability distribution on \RR_+ defined inductively on Stern-Brocot intervals. In the non-linear case, the largest Lyapunov exponent is not an analytic function of pp, since we prove that it is equal to zero for 0<p1/30<p\le1/3. We also give some results about the variations of the largest Lyapunov exponent, and provide a formula for its derivative
    corecore