22 research outputs found

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal

    Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials [Bi·yomalzemelerden i·zole edi·len Staphylococcus epidermidis suşlarinin yüzey özelli·kleri·ni·n beli·rlenmesi·]

    No full text
    PubMed ID: 20455404The surface properties of bacteria play an important role on adhesion to the biomaterial surface. In this study, the surface properties of Staphylococcus epidermidis strains isolated from clinically used polymeric biomaterial surfaces were investigated on the basis of zeta potential, hydrophobicity and surface topography. A total of 10 S.epidermidis strains isolated from intravenous catheters (n= 5), endotracheal tubes (n= 3) and central venous catheters (n= 2) which were used in the patients of pulmonary Intensive Care Unit, Ege University Medical Faculty Hospital, were included to the study. Seven of those isolates were biofilm producers, inhabiting biofilm genes, 2 were non-biofilm producers, however, inhabiting biofilm genes, and 1 was non-biofilm producer, inhabiting no biofilm genes. Zeta potential analysis have been performed in 3 different buffers (phosphate-buffered saline, 1 mM potassium chloride and 1 mM potassium phosphate buffer) and at different pH values (pH 4.1-8.2), in order to simulate in vivo environment of the biomaterials. Hydrophobicities of the strains were examined by bacterial adhesion to hydrocarbon (BATH) test and the surface topography of biofilms and slime layers were visualized by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods. It was found that all strains have negative zeta potential values (surface charge) in all buffers and pH values. In hydrophobicity analysis, the highest value (86%) was determined for non-biofilm forming S.epidermidis strain YT-169b (endotracheal tube isolate) and the lowest hydrophobicity (2.5%) was determined for biofilm forming S.epidermidis strain YT-212 (central venous catheter isolate). Biofilm and slime layers of the strains were imaginated by AFM and SEM analysis in µm scale. SEM analysis showed that bacteria highly adhered to rough surfaces on biomaterial surfaces and the produced slime layers covered the surface of bacteria. In conclusion, elucidating the surface properties of opportunistic pathogens in different physiologic buffers will give important clues for the production of non-adhesive materials and antibacterial surfaces for those bacteria. It was also estimated that designing the surface of the biomaterial to have negative surface charge in the body and to be as smooth as possible will hamper biofilm formation

    Investigation of HA cement preparation and properties by using central composite design

    No full text
    23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011 -- 6 November 2011 through 9 November 2011 -- Istanbul -- 87411The goal of the present work was to investigate the effects of several cement preparation parameters on setting and hardening reaction mechanisms and hydroxyapatite (HA) cement properties. A central composite experimental design (CCD) was conducted by choosing particle size, solid to liquid ratio, pH, seed concentration and buffer concentration as design parameters along with compressive strength and setting time being the responses. Tetracalcium phosphate (TTCP) powders were prepared by heat treatment of calcium and phosphate source mixtures in the 1200-1400°C temperature range followed by quenching to room temperature in a dessicator. The second phase used in the formulations (brushite) was prepared by aqueous chemical methods. A series of HA pastes/cements were prepared by changing the above mentioned design parameters. Cements were characterized by a standardized setting time test, mechanical testing machine, SEM and XRD. HA cements with the desired properties can be formulated by using CCD in which the responses were expressed by a second order polynomial equation of the parameters. Compressive strengths for the majority of HA cements were determined to be in the 100-160 MPa range which is significantly higher than those reported in the literature. © (2012) Trans Tech Publications
    corecore