33 research outputs found

    Adjoint Monte Carlo Simulation of Fusion Product Activation Probe Experiment in ASDEX Upgrade tokamak

    Full text link
    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations. Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma.Comment: Contribution in 1st EPS Conference on Plasma Diagnostics. First two versions are for PoS(ECPD 2015)055. This 3rd version was accepted for publishing in Journal of Instrumentatio

    ASCOT: solving the kinetic equation of minority particle species in tokamak plasmas

    Full text link
    A comprehensive description of methods, suitable for solving the kinetic equation for fast ions and impurity species in tokamak plasmas using Monte Carlo approach, is presented. The described methods include Hamiltonian orbit-following in particle and guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations in the presence of Coulomb collisions, neoclassical tearing modes and Alfv\'en eigenmodes as electromagnetic perturbations relevant to fast ions, together with plasma flow and atomic reactions relevant to impurity studies. Applying the methods, a complete reimplementation of the well-established minority species code ASCOT is carried out as a response both to the increase in computing power during the last twenty years and to the weakly structured growth of the code, which has made implementation of additional models impractical. Also, a benchmark between the previous code and the reimplementation is accomplished, showing good agreement between the codes.Comment: 13 pages, 9 figures, submitted to Computer Physics Communication

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053.Peer ReviewedArticle signat per 497 autors/es: Thomas Sunn Pedersen1,2,∗ , I. Abramovic3, P. Agostinetti4, M. Agredano Torres1, S. Äkäslompolo1, J. Alcuson Belloso1, P. Aleynikov1, K. Aleynikova1, M. Alhashimi1, A. Ali1, N. Allen5, A. Alonso6, G. Anda7, T. Andreeva1, C. Angioni8, A. Arkhipov8, A. Arnold1, W. Asad8, E. Ascasibar6, M.-H. Aumeunier9, K. Avramidis10, E. Aymerich11, S.-G. Baek3, J. Bähner1, A. Baillod12, M. Balden1, M. Balden8, J. Baldzuhn1, S. Ballinger3, M. Banduch1, S. Bannmann1, A. Banon Navarro8, A. Bañon Navarro ´ 1, T. Barbui13, C. Beidler1, C. Belafdil9, A. Bencze7, A. Benndorf1, M. Beurskens1, C. Biedermann1, O. Biletskyi14, B. Blackwell15, M. Blatzheim1, T. Bluhm1, D. Böckenhoff1, G. Bongiovi16, M. Borchardt1, D. Borodin17, J. Boscary8, H. Bosch1,18, T. Bosmann19, B. Böswirth8, L. Böttger1, A. Bottino8, S. Bozhenkov1, R. Brakel1, C. Brandt1, T. Bräuer1, H. Braune1, S. Brezinsek17, K. Brunner1, S. Buller1, R. Burhenn1, R. Bussiahn1, B. Buttenschön1, A. Buzás7, V. Bykov1, I. Calvo6, K. Camacho Mata1, I. Caminal20, B. Cannas11, A. Cappa6, A. Carls1, F. Carovani1, M. Carr21, D. Carralero6, B. Carvalho22, J. Casas20, D. Castano-Bardawil17, F. Castejon6, N. Chaudhary1, I. Chelis23, A. Chomiczewska24, J.W. Coenen13,17, M. Cole1, F. Cordella25, Y. Corre9, K. Crombe26, G. Cseh7, B. Csillag7, H. Damm1, C. Day10, M. de Baar27, E. De la Cal6, S. Degenkolbe1, A. Demby13, S. Denk3, C. Dhard1, A. Di Siena8,28, A. Dinklage12, T. Dittmar17, M. Dreval14, M. Drevlak1, P. Drewelow1, P. Drews17, D. Dunai7, E. Edlund3, F. Effenberg29, G. Ehrke1, M. Endler1, D.A. Ennis5, F.J. Escoto6, T. Estrada6, E. Fable8, N. Fahrenkamp1, A. Fanni11, J. Faustin1, J. Fellinger1, Y. Feng1, W. Figacz4, E. Flom13, O. Ford1, T. Fornal24, H. Frerichs13, S. Freundt1, G. Fuchert1, M. Fukuyama30, F. Füllenbach1, G. Gantenbein10, Y. Gao1, K. Garcia13, J.M. García Regaña6, I. García-Cortés6, J. Gaspar31, D.A. Gates29, J. Geiger1, B. Geiger13, L. Giudicotti32, A. González6, A. Goriaev26,33, D. Gradic1, M. Grahl1, J.P. Graves12, J. Green13, E. Grelier9, H. Greuner8, S. Groß1, H. Grote1, M. Groth34, M. Gruca24, O. Grulke1,35, M. Grün1, J. Guerrero Arnaiz1, S. Günter8, V. Haak1, M. Haas1, P. Hacker1, A. Hakola36, A. Hallenbert1, K. Hammond29, X. Han17,37, S.K. Hansen3, J.H. Harris38, H. Hartfuß1, D. Hartmann1, D. Hathiramani1, R. Hatzky8, J. Hawke39, S. Hegedus7, B. Hein8, B. Heinemann8, P. Helander12, S. Henneberg1, U. Hergenhahn8,40, C. Hidalgo6, F. Hindenlang8, M. Hirsch1, U. Höfel1, K.P. Hollfeld17, A. Holtz1, D. Hopf8, D. Höschen17, M. Houry9, J. Howard19, X. Huang41, M. Hubeny17, S. Hudson29, K. Ida9, Y. Igitkhanov10, V. Igochine8, S. Illy10, C. Ionita-Schrittwieser42, M. Isobe39, M. Jabłczynska ´ 24, S. Jablonski24, B. Jagielski1, M. Jakubowski1, A. Jansen van Vuuren1, J. Jelonnek10, F. Jenko8, F. Jenko8, T. Jensen35, H. Jenzsch1, P. Junghanns8, J. Kaczmarczyk24, J. Kallmeyer1, U. Kamionka1, M. Kandler8, S. Kasilov43, Y. Kazakov26, D. Kennedy1, A. Kharwandikar1, M. Khokhlov1, C. Kiefer8, C. Killer1, A. Kirschner17, R. Kleiber1, T. Klinger12, S. Klose1, J. Knauer1, A. Knieps17, F. Köchl44, G. Kocsis7, Ya.I. Kolesnichenko45, A. Könies1, R. König1, J. Kontula34, P. Kornejew1, J. Koschinsky, M.M. Kozulia14, A. Krämer-Flecken17, R. Krampitz1, M. Krause1, N. Krawczyk24, T. Kremeyer1, L. Krier10, D.M. Kriete5, M. Krychowiak1, I. Ksiazek46, M. Kubkowska24, M. Kuczynski1, G. Kühner1, A. Kumar15, T. Kurki-Suonio34, S. Kwak1, M. Landreman47, P.T. Lang8, A. Langenberg1, H.P. Laqua12, H. Laqua1, R. Laube1, S. Lazerson1, M. Lewerentz1, C. Li17, Y. Liang17, Ch. Linsmeier17, J. Lion1, A. Litnovsky17,48, S. Liu37, J. Lobsien1, J. Loizu12, J. Lore38, A. Lorenz1, U. Losada6, F. Louche26, R. Lunsford29, V. Lutsenko45, M. Machielsen12, F. Mackel8, J. Maisano-Brown3, O. Maj8, D. Makowski49, G. Manduchi50, E. Maragkoudakis6, O. Marchuk17, S. Marsen1, E. Martines4, J. Martinez-Fernandez6, M. Marushchenko1, S. Masuzaki41, D. Maurer5, M. Mayer8, K.J. McCarthy6, O. Mccormack4, P. McNeely1, H. Meister8, B. Mendelevitch8, S. Mendes1, A. Merlo1, A. Messian26, A. Mielczarek49, O. Mishchenko1, B. Missal1, R. Mitteau9, V.E. Moiseenko14, A. Mollen1, V. Moncada9, T. Mönnich1, T. Morisaki41, D. Moseev1, G. Motojima41, S. Mulas6, M. Mulsow1, M. Nagel1, D. Naujoks1, V. Naulin35, T. Neelis19, H. Neilson29, R. Neu8, O. Neubauer17, U. Neuner1, D. Nicolai17, S.K. Nielsen35, H. Niemann1, T. Nishiza1, T. Nishizawa1, T. Nishizawa8, C. Nührenberg1, R. Ochoukov8, J. Oelmann17, G. Offermanns17 K. Ogawa41, S. Okamura41, J. Ölmanns17, J. Ongena26, J. Oosterbeek1, M. Otte1, N. Pablant29, N. Panadero Alvarez6, N. Panadero Alvarez6, A. Pandey1, E. Pasch1, R. Pavlichenko14, A. Pavone1, E. Pawelec46, G. Pechstein1, G. Pelka24, V. Perseo1, B. Peterson41, D. Pilopp1, S. Pingel1, F. Pisano11, B. Plöckl8, G. Plunk1, P. Pölöskei1, B. Pompe2, A. Popov51, M. Porkolab3, J. Proll19, M.J. Pueschel19,27, M.-E. Puiatti52, A. Puig Sitjes1, F. Purps1, K. Rahbarnia1, M. Rasinski ´ 17, J. Rasmussen35, A. Reiman29, F. Reimold1, M. Reisner8, D. Reiter17, M. Richou9, R. Riedl8, J. Riemann1, K. Riße1, G. Roberg-Clark1, V. Rohde8, J. Romazanov17, D. Rondeshagen1, P. Rong1, L. Rudischhauser1, T. Rummel1, K. Rummel1, A. Runov1, N. Rust1, L. Ryc24, P. Salembier20, M. Salewski35, E. Sanchez6, S. Satake41, G. Satheeswaran17, J. Schacht1, E. Scharff1, F. Schauer8, J. Schilling1, G. Schlisio1, K. Schmid8, J. Schmitt5, O. Schmitz13, W. Schneider1, M. Schneider1, P. Schneider8, R. Schrittwieser42, T. Schröder1, M. Schröder1, R. Schroeder1, B. Schweer26, D. Schwörer1, E. Scott1, E. Scott8, B. Shanahan1, G. Sias11, P. Sichta29, M. Singer1, P. Sinha29, S. Sipliä34, C. Slaby1, M. Sleczka53, H. Smith1, J. Smoniewski54, E. Sonnendrücker8, M. Spolaore4, A. Spring1, R. Stadler8, D. Stanczak24, T. Stange1, I. Stepanov26, L. Stephey13, J. Stober8, U. Stroth8,55, E. Strumberger8, C. Suzuki41, Y. Suzuki41, J. Svensson1, T. Szabolics7, T. Szepesi7, M. Szücs7, F.L. Tabares6, N. Tamura41, A. Tancetti35, C. Tantos10, J. Terry3, H. Thienpondt6, H. Thomsen1, M. Thumm10, J.M. Travere9, P. Traverso5, J. Tretter8, E. Trier8, H. Trimino Mora1, T. Tsujimura41, Y. Turkin1, A. Tykhyi45, B. Unterberg17, P. van Eeten1, B.Ph. van Milligen6, M. van Schoor26, L. Vano1, S. Varoutis10, M. Vecsei7, L. Vela56, J.L. Velasco6, M. Vervier17, N. Vianello50, H. Viebke1, R. Vilbrandt1, G. Vogel8, N. Vogt1, C. Volkhausen1, A. von Stechow1, F. Wagner1, E. Wang17, H. Wang57, F. Warmer1, T. Wauters26, L. Wegener1, T. Wegner1, G. Weir1, U. Wenzel1, A. White3, F. Wilde1, F. Wilms1, T. Windisch1, M. Winkler1, A. Winter1, V. Winters1, R. Wolf118, A.M. Wright29, G.A. Wurden39, P. Xanthopoulos1, S. Xu17, H. Yamada58, H. Yamaguchi41, M. Yokoyama41, M. Yoshinuma41, Q. Yu8, M. Zamanov14, M. Zanini1, M. Zarnstorff29, D. Zhang1, S. Zhou17, J. Zhu1, C. Zhu29, M. Zilker8, A. Zocco1, H. Zohm8, S. Zoletnik7 and L. Zsuga7 // 1 Max Planck Institute for Plasma Physics, Garching and Greifswald, Germany: 2 University of Greifswald, Greifswald, Germany; 3 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America; 4 Consorzio RFX, Corso Stati Uniti, 4-35127 Padova, Italy; 5 Auburn University, Auburn, AL 36849, United States of America; 6 CIEMAT, Avenida Complutense, 40, 28040 Madrid, Spain; 7 Center for Energy Research, Konkoly-Thegeut 29-33, 1121 Budapest, Hungary; 8 Max-Planck-Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching bei München, Germany; 9 CEA Cadarache, 13115 Saint-Paul-lez-Durance, France; 10 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; 11 University of Cagliari, Via Universita, 40, 09124 Cagliari, Italy; 12 École Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015 Lausanne, Switzerland; 13 University of Wisconsin–Madison, Engineering Drive, Madison, WI 53706, United States of America; 14 Institute of Plasma Physics, National Science Center ‘Kharkiv Institute of Physics and Technology’, Kharkiv, Ukraine; 15 The Australian National University, Acton ACT 2601, Canberra, Australia; 16 Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, Palermo, 90128, Italy; 17 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany; 18 Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; 19 Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands; 20 Universitat Politècnica de Catalunya. BarcelonaTech, C. Jordi Girona, 31, 08034 Barcelona, Spain; 21 Culham Center for Fusion Energy, Abingdon OX14 3EB, United Kingdom; 22 Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; 23 Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; 24 Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland; 25 ENEA—Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044 Frascati RM, Italy; 26 Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, B-1000 Brussels, Belgium; 27 Dutch Institute for Fundamental Energy Research, PO Box 6336, 5600 HH Eindhoven, Netherlands; 28 University of Texas, Austin, TX, United States of America; 29 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America; 30 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; 31 Aix-Marseille University, Jardin du Pharo, 58 Boulevard Charles Livon, 13007, Marseille, France; 32 Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova, Italy; 33 Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; 34 Aalto University, 02150 Espoo, Finland; 35 Department of Physics, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs Lyngby, Denmark; 36 VTT Technical Research Center of Finland Ltd., PO Box 1000, FI-02044 VTT, Finland; 37 Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui, China; 38 Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, United States of America; 39 Los Alamos National Laboratory, NM 87545, United States of America; 40 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany; 41 National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu Prefecture 509-5292, Japan; 42 Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria; 43 Graz University of Technology, Rechbauerstraße 12, 8010 GRAZ, Austria; 44 Austrian Academy of Science, Doktor-Ignaz-Seipel-Platz 2, 1010 Wien, Austria; 45 Institute for Nuclear Research, prospekt Nauky 47, Kyiv 03028, Ukraine; 46 University of Opole, plac Kopernika 11a, 45-001 Opole, Poland; 47 University of Maryland, Paint Branch Drive, College Park, MA 20742, United States of America; 48 National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation; 49 Department of Microelectronics and Computer Science, Lodz University of Technology, Wolczanska 221/223, 90-924 Lodz, Poland; 50 Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 7, 00185 Roma, Italy; 51 Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; 52 Istituto di Fisica del Plasma Piero Caldirola, Via Roberto Cozzi, 53, 20125 Milano, Italy; 53 University of Szczecin, 70-453, aleja Papieza Jana Pawła II 22A, Szczecin, Poland; 54 Lawrence University, 711 E Boldt Way, Appleton, WI 54911, United States of America; 55 Physik-Department E28, Technische Universität München, 85747 Garching, Germany; 56 Universidad Carlos III de Madrid, Av. de la Universidad, 30 Madrid, Spain; 57 Yale University, New Haven, CT 06520, United States of America; 58 University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chhiab 277-0882, JapanObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminantPostprint (published version

    EUROfusion Integrated Modelling (EU-IM) capabilities and selected physics applications

    Get PDF
    International audienceRecent developments and achievements of the EUROfusion Code Development for Integrated Modelling project (WPCD), which aim is to provide a validated integrated modelling suite for the simulation and prediction of complete plasma discharges in any tokamak, are presented. WPCD develops generic complex integrated simulations, workflows, for physics applications, using the standardized European Integrated Modelling (EU-IM) framework. Selected physics applications of EU-IM workflows are illustrated in this paper

    Energeettisten ionien mallinnusta toroidaalisesti epäsymmetrisissä tokamakeissa

    No full text
    The world electricity demand is increasing due to the growing global population striving for an ever-improving standard of living. Fusion energy research has the goal of bringing the energy source of the stars to Earth. The leading scheme is to magnetically confine a very hot plasma within a tokamak reactor. This thesis studies the energetic particles produced by the external heating of the plasma and by the fusion reactions themselves. The energetic particles carry a risk of damaging the reactor walls, if they are allowed to escape the plasma. This may occur if the carefully tuned magnetic field is perturbed by, e.g., introducing components made out of ferromagnetic materials to the tokamak. A quantitative study of the confinement of the fast, energetic particles requires careful calculation of the perturbation, followed by detailed simulations of fast ion behaviour with validated tools. In this work, the perturbative effect of the European test blanket modules (TBMs) of ITER were analysed. The TBMs, containing ferromagnetic steel, are needed for testing the technology for breeding tritium fuel from lithium. The magnetisation of the TBMs was computed with the finite element method using a geometry of unprecedented detail. Subsequently, the ASCOT code was used to assess the confinement of neutral beam injected (NBI) deuterons and fusion alpha particles. As the main result, the TBMs were found to be compatible with fast ion confinement requirements, at least in the 15MA Q=10 inductive scenario, the baseline ITER plasma. The fast ion modelling tools were validated with measurements at the ASDEX Upgrade tokamak: the flux of NBI ions was measured with the fast ion loss diagnostics (FILD) and the flux of fusion protons with the activation probe. The ASCOT simulations are in qualitative agreement with FILD measurements. The activation probe facilitated quantitative analysis. This required the development of an adjoint Monte Carlo method for calculating charged particle fluxes to the wall. The new method was used in the fusion proton modelling, the results of which agree quite well with mea- surements even quantitatively. The work presented here affirms the viability of the TBM design. It also validates and expands the fast ion behaviour and diagnostics modelling toolbox.Maailman kasvavan väestön nouseva elintaso vaatii kasvavassa määrin sähköenergiaa. Tämä väitöskirja on fuusioenergiatutkimuksen alalta, jonka tavoitteena on löytää keino tuottaa sähköä hyödyntäen tähtien energianlähdettä. Tällä hetkellä lupaavin fuusioreaktorikonsepti on tokamak, jossa on erittäin kuumaa plasmaa vangittuna magneettiseen pulloon. Plasman kuumentaminen ja itse fuusioreaktiot tuottavat erityisen korkeaenergisiä hiukkasia, jotka saattavat vahingoittaa tokamakin seiniä, mikäli pääsevät hallitsemattomasti karkaamaan plasmasta. Niin voi esimerkiksi käydä, jos tokamakiin asennetaan ferromagneettista materiaalia sisältäviä komponentteja, jotka häiritsevät hienosäädettyä magneettikenttää. Häiriön vaikutusten arviointi vaatii ensinnäkin häiriön huolellisen laskemisen ja toiseksi energeettisten hiukkasten käytöksen mallinnuksen kelvollisiksi osoitettuja menetelmiä käyttäen. Tässä työssä tutkittiin ferromagneettisesta terästä sisältävän tritiumin hyötämisen testilaitteiston (THTL) aiheuttaman magneettisen häiriön vaikutusta ITER-tokamakissa. Eurooppalaisen THTL:n magnetisaatio laskettiin elementtimenetelmällä, minkä jälkeen neutraalisuihkutettujen deuteronien ja fuusioperäisten α-hiukkasten käytöstä tutkittiin ASCOT ohjelmistolla. Työn keskeinen tulos on, että eurooppalaisen THTL:n ei havaittu heikentävän liiallisesti energeettisten ionien koossapitoa ainakaan ITER in lähtökohtaisessa 15MA Q=10 induktiivisessa skenaariossa. Energeettisten ionien mallinustyökalun kelvollisuus varmistettiin mallintamalla ASDEX Upgrade tokamakilla tehtyjä mittauksia. Fuusioprotoneja mitattiin aktivaatiokoettimella ja neutraalisuihkudeuteroneja FILD -koettimella. ASCOT -tulokset ovat laadullisesti yhtäpitäviä FILD mittauksien kanssa. Aktivaatiokoettimen mallinnus oli jopa määrällisesti yhteensopiva mittausten kanssa, mutta vertailun suorittamiseksi täytyi kehittää adjungoitu Monte Carlo -menetelmä seinälle tulevan hiukkasvuon laskemiseen. Tässä väitöskirjassa esitetty työ vahvistaa luottamusta eurooppalaisen tritiumhyötö-laitteiston kelpoisuuteen. Työn edetessä luotiin uusia energeettisten hiukkasten mallinnustyökaluja ja varmistettiin menetelmien kelvollisuus

    Biot Savart Law integrator BioSaw

    No full text
    This contribution documents the methods used in the BioSaw code. The code is inteded to be a flexible tool for calculating magnetic fields due to coils in magnetic confinement fusion devices. It assumes the conductors are infinitesimally thin and can be described as either point sequences or circular coils. The code can calculate both the magnetic field as well as the vector potential due to the coils. The fields can be reduced very near the coils to avoid singular behaviour caused by the thin conductor approximation
    corecore