4 research outputs found

    Artificial Intelligence and Democratization of the Use of Lung Ultrasound in COVID-19: On the Feasibility of Automatic Calculation of Lung Ultrasound Score

    Get PDF
    9 pĂĄginas, 6 figuras, 3 tablasDuring the COVID-19 pandemic, lung ultrasound has been revealed as a powerful technique for diagnosis and follow-up of pneumonia, the principal complication of SARS-CoV-2 infection. Nevertheless, being a relatively new and unknown technique, the lack of trained personnel has limited its application worldwide. Computer-aided diagnosis could possibly help to reduce the learning curve for less experienced physicians, and to extend such a new technique such as lung ultrasound more quickly. This work presents the preliminary results of the ULTRACOV (Ultrasound in Coronavirus disease) study, aimed to explore the feasibility of a real-time image processing algorithm for automatic calculation of the lung ultrasound score (LUS). A total of 28 patients positive on COVID-19 were recruited and scanned in 12 thorax zones following the lung score protocol, saving a 3 s video at each probe position. Those videos were evaluated by an experienced physician and by a custom developed automated detection algorithm, looking for A-Lines, B-Lines, consolidations, and pleural effusions. The agreement between the findings of the expert and the algorithm was 88.0% for B-Lines, 93.4% for consolidations and 99.7% for pleural effusion detection, and 72.8% for the individual video score. The standard deviation of the patient lung score difference between the expert and the algorithm was ±2.2 points over 36. The exam average time with the ULTRACOV prototype was 5.3 min, while with a conventional scanner was 12.6 min. Conclusion: A good agreement between the algorithm output and an experienced physician was observed, which is a first step on the feasibility of developing a real-time aided-diagnosis lung ultrasound equipment. Additionally, the examination time was reduced to less than half with regard to a conventional ultrasound exam. Acquiring a complete lung ultrasound exam within a few minutes is possible using fairly simple ultrasound machines that are enhanced with artificial intelligence, such as the one we propose. This step is critical to democratize the use of lung ultrasound in these difficult times.This research was partially funded by CDTI (Spanish acronym: Centre for Industrial Technological Development), funding number COI-20201153. Partially supported by the Google Cloud Research Credits program with the funding number GCP19980904, by the project RTI2018-099118-A-I00 founded by MCIU/AEI/FEDER UE and by the European Commission–NextGenerationEU, through CSIC’s Global Health Platform (PTI Salud Global).Peer reviewe

    The Impact of Different Lung Ultrasound Protocols in the Assessment of Lung Lesions in COVID-19 Patients: Is There an Ideal Lung Ultrasound Protocol?.

    Get PDF
    Background In the past months, several lung ultrasonography (LUS) protocols have been proposed, mainly on previously validated schemes independent of coronavirus disease 2019 (COVID-19). Objectives The main purpose of this study was to determine the impact and accuracy of different LUS protocols proposed in COVID-19. Methods Patients were evaluated with a standard sequence of LUS scans in 72 intercostal spaces along 14 anatomic lines in the chest. A scoring system of LUS findings was reported and then analyzed separately according to each proposed LUS protocol zones. This score was then correlated to a validated Pulmonary Inflammation Index (PII) on chest Computed Tomography (CT). Results Thirty-two patients were enrolled. The most frequent pattern was ground-glass opacities in the chest X-ray (53.1%), chest CT (59.1%) and subpleural or lobar consolidations (40.8%) in the posteroinferior areas (p < 0.001) on LUS. The Interclass Correlation Coefficient (ICC) was significantly correlated with almost every protocol analyzed except the 8-zone (p = 0.119) and the 10-zone protocol that only included one posterior point (p = 0.052). The highest ICC was obtained with a 12-zone protocol (ICC 0.500; p = 0.027) and decreased as more points were included. Conclusions In conclusion, our study results suggest that performing an ultrasound protocol with 12-zone scanning, including the superior and inferior areas of the anterior, lateral and posterior regions of the chest was consistent with higher ICC and higher degree of concordance with CT. We emphasize the need of a more standardization technique to further implement and develop this imaging modality in COVID-19post-print1035 K

    Inter-Rater Variability in the Evaluation of Lung Ultrasound in Videos Acquired from COVID-19 Patients

    Get PDF
    12 pĂĄginas, 7 figuras, 1 tablaLung ultrasound (LUS) allows for the detection of a series of manifestations of COVID-19, such as B-lines and consolidations. The objective of this work was to study the inter-rater reliability (IRR) when detecting signs associated with COVID-19 in the LUS, as well as the performance of the test in a longitudinal or transverse orientation. Thirty-three physicians with advanced experience in LUS independently evaluated ultrasound videos previously acquired using the ULTRACOV system on 20 patients with confirmed COVID-19. For each patient, 24 videos of 3 s were acquired (using 12 positions with the probe in longitudinal and transverse orientations). The physicians had no information about the patients or other previous evaluations. The score assigned to each acquisition followed the convention applied in previous studies. A substantial IRR was found in the cases of normal LUS (Îș = 0.74), with only a fair IRR for the presence of individual B-lines (Îș = 0.36) and for confluent B-lines occupying 50% (Îș = 0.50). No statistically significant differences between the longitudinal and transverse scans were found. The IRR for LUS of COVID-19 patients may benefit from more standardized clinical protocols.This research was partially funded by CDTI (Spanish acronym: Centre for Industrial Tech- nological Development), funding number COI-20201153. Partially supported by the Google Cloud Research Credits program with the funding number GCP19980904, by the project RTI2018-099118- A-I00 founded by MCIU/AEI/FEDER UE and by the European Commission–NextGenerationEU, through CSIC’s Global Health Platform (PTI Salud Global)

    Efficacy and Safety of Tinzaparin in Prophylactic, Intermediate and Therapeutic Doses in Non-Critically Ill Patients Hospitalized with COVID-19: The PROTHROMCOVID Randomized Controlled Trial

    No full text
    Hospitalized patients with COVID-19 are at increased risk of thrombosis, acute respiratory distress syndrome and death. The optimal dosage of thromboprophylaxis is unknown. The aim was to evaluate the efficacy and safety of tinzaparin in prophylactic, intermediate, and therapeutic doses in non-critical patients admitted for COVID-19 pneumonia. PROTHROMCOVID is a randomized, unblinded, controlled, multicenter trial enrolling non-critical, hospitalized adult patients with COVID-19 pneumonia. Patients were randomized to prophylactic (4500 IU), intermediate (100 IU/kg), or therapeutic (175 IU/kg) groups. All tinzaparin doses were administered once daily during hospitalization, followed by 7 days of prophylactic tinzaparin at discharge. The primary efficacy outcome was a composite endpoint of symptomatic systemic thrombotic events, need for invasive or non-invasive mechanical ventilation, or death within 30 days. The main safety outcome was major bleeding at 30 days. Of the 311 subjects randomized, 300 were included in the prespecified interim analysis (mean [SD] age, 56.7 [14.6] years; males, 182 [60.7%]). The composite endpoint at 30 days from randomization occurred in 58 patients (19.3%) of the total population; 19 (17.1 %) in the prophylactic group, 20 (22.1%) in the intermediate group, and 19 (18.5%) in the therapeutic dose group (p = 0.72). No major bleeding event was reported; non-major bleeding was observed in 3.7% of patients, with no intergroup differences. Due to these results and the futility analysis, the trial was stopped. In non-critically ill COVID-19 patients, intermediate or full-dose tinzaparin compared to standard prophylactic doses did not appear to affect the risk of thrombotic event, non-invasive ventilation, or mechanical ventilation or death. Trial RegistrationClinicalTrials.gov Identifier (NCT04730856). Edura-CT registration number: 2020-004279-42
    corecore