68 research outputs found

    Optimization of Amino Acid Sequence of Fmoc-Dipeptides for Interaction with Lipid Membranes

    Get PDF
    Fmoc-dipeptides appear as highly relevant building blocks in smart hydrogels and nanovehicles for biological applications. The interactions of the Fmocdipeptides with the cell membrane determine the efficiency of the nanomaterials based on the Fmoc-dipeptides’ internalization of nanovehicles for drug delivery. Here, we aim to understand the interplay of the interactions between the Fmoc-dipeptides and a phospholipid surface as a function of the amino acid sequence. The DMPA (1,2-dimyristoyl-snglycero- 3-phosphate) phospholipid in Langmuir monolayers was used as a model cell surface. A set of seven derivatives of Fmoc-dipeptides with a broad range of hydrophobicity were included. Mixed monolayers composed of DMPA/Fmoc-dipeptides in an equimolar ratio were built and characterized in situ at the air/water interface. Surface pressure−molecular area isotherms (π−A), Brewster angle microscopy (BAM), and UV−vis reflection spectroscopy (ΔR) were combined to provide a holistic picture of the interactions of the Fmoc-dipeptide with the phospholipid molecules. An increase in the hydrophobicity led to enhanced interaction of the Fmoc-dipeptide and DMPA molecules. The compression of the mixed monolayer could displace a significant fraction of the Fmoc-dipeptide from the monolayer. High hydrophobicity promoted self-assembly of the Fmoc-dipeptides over interaction with the phospholipid surface. The interplay of these two phenomena was analyzed as a function of the amino acid sequence of the Fmoc-dipeptides. The toxicity effect of Fmoc-FF could be observed and detailed at the molecular level. This study suggests that the adjustment of the hydrophobicity of the Fmoc-dipeptides within a defined range might optimize their efficiency for interaction with the lipid membranes. A semiquantitative guide for the chemical design of Fmoc-dipeptides for biological applications is proposed herein

    Alginate Hydrogels Reinforced by Dehydration under Stress—Application to a Soft Magnetic Actuator

    Get PDF
    We investigated the effect of partial dehydration under mechanical stress in the properties of alginate hydrogels. For this aim, we characterized the mechanical properties of the hydrogels under tensile and shear stress, as well as their swelling behavior, macroscopic appearance, and microscopic structure. We found that the processes of dehydration under a mechanical stress were irreversible with fully rehydration being impossible. What is more, these processes gave rise to an enhancement of the mechanical robustness of the hydrogels beyond the effect due to the increase in polymer concentration caused by dehydration. Finally, we analyzed the applicability of these results to alginate-based magnetic hydrogel grippers that bended in response to an applied magnetic field. Remarkably, our study demonstrated that the dehydration of the magnetic hydrogels under compression facilitated their bending response

    Self-assembly in magnetic supramolecular hydrogels

    Get PDF
    Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials

    Attaching zanamivir to a polymer markedly enhances its activity against drug-resistant strains of influenza a virus

    Get PDF
    Effects of the commercial drug zanamivir (Relenza™) covalently attached to poly-l-glutamine on the infectivity of influenza A viruses are examined using the plaque reduction assay and binding affinity to viral neuraminidase (NA). These multivalent drug conjugates exhibit (i) up to a 20,000-fold improvement in anti-influenza potency compared with the zanamivir parent against human and avian viral strains, including both wild-type and drug-resistant mutants, and (ii) superior neuraminidase (NA) inhibition constants, especially for the mutants. These findings provide a basis for exploring polymer-attached inhibitors as more efficacious therapeutics, particularly against drug-resistant influenza strains.National Institutes of Health (U.S.) (Grant Number U01-AI074443)Fundación Ramón Areces. Postdoctoral Fellowshi

    A New L-Proline Amide Hydrolase with Potential Application within the Amidase Process

    Get PDF
    This research was supported by the Spanish Ministry of Science and Innovation/FEDER funds grant PID2020-116261GB-I00/AEI/10.13039/501100011033 (JAG), from the FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades grants P18-FR-3533 (LAC) and P12-FQM-790 (RCM), and from the University of Granada grant PPJI2017-1 (SMR).L-proline amide hydrolase (PAH, EC 3.5.1.101) is a barely described enzyme belonging to the peptidase S33 family, and is highly similar to prolyl aminopeptidases (PAP, EC. 3.4.11.5). Besides being an S-stereoselective character towards piperidine-based carboxamides, this enzyme also hydrolyses different L-amino acid amides, turning it into a potential biocatalyst within the Amidase Process. In this work, we report the characterization of L-proline amide hydrolase from Pseudomonas syringae (PsyPAH) together with the first X-ray structure for this class of L-amino acid amidases. Recombinant PsyPAH showed optimal conditions at pH 7.0 and 35 degrees C, with an apparent thermal melting temperature of 46 degrees C. The enzyme behaved as a monomer at the optimal pH. The L-enantioselective hydrolytic activity towards different canonical and non-canonical amino-acid amides was confirmed. Structural analysis suggests key residues in the enzymatic activity.Spanish GovernmentEuropean Commission PID2020-116261GB-I00/AEI/10.13039/501100011033FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades P18-FR-3533 P12-FQM-790University of Granada PPJI2017-1 CTS-20

    Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study

    Full text link
    Oleanolic acid (OA) and maslinic acid (MA) are pentacyclic triterpenic compounds that abound in industrial olive oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm

    Biomedical applications of magnetic hydrogels

    Get PDF
    Hydrogels are used in biomedical applications thanks to their high-water content, porosity, and their ability to easily modify their properties (mechanical, chemical, microstructure, etc.). Hydrogels are the materials that most resemble the extracellular matrix of mammals. In recent years, magnetic hydrogels have become especially important. These are the result of combining magnetic nanoparticles with different hydrogel matrices. Among its properties, they have the ability to be remotely controlled modifying their physical properties, such as stability, stiffness and temperature (magnetic hyperthermia). Such unique characteristics make magnetic hydrogels very promising in biomedical applications such as, tissue engineering, drug delivery, biosensors, and cancer therapy. At this respect, this chapter focuses on the main biomedical applications of magnetic hydrogels and the most important discoveries on the subject.This study was supported by project FIS2017?85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). CGV acknowledges financial support by Ministerio de Ciencia, Innovación y Universidades and University of Granada, Spain, for her FPU17/00491 grant

    Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces

    Get PDF
    Dipeptides self-assemble into supramolecular structures showing plenty of applications in the nanotechnology and biomedical fields. A set of Fmoc-dipeptides with different aminoacid sequences has been synthesized and their self-assembly at fluid interfaces has been assessed. The relevant molecular parameters for achieving an efficient 2D self-assembly process have been established. The selfassembled nanostructures of Fmoc-dipeptides displayed significant chirality and retained the chemical functionality of the aminoacids. The impact of the sequence on the final supramolecular structure has been evaluated in detail using in situ characterization techniques at air/water interfaces. This study provides a general route for the 2D self-assembly of Fmoc-dipeptides

    Bioorthogonal uncaging of cytotoxic paclitaxel through Pd nanosheet-hydrogel frameworks

    Get PDF
    The promising potential of bioorthogonal catalysis in biomedicine is inspiring incremental efforts to design strategies that regulate drug activity in living systems. To achieve this, it is not only essential to develop customized inactive prodrugs and biocompatible metal catalysts but also the right physical environment for them to interact and enable drug production under spatial and/or temporal control. Toward this goal, here, we report the first inactive precursor of the potent broad-spectrum anticancer drug paclitaxel (a.k.a. Taxol) that is stable in cell culture and labile to Pd catalysts. This new prodrug is effectively uncaged in cancer cell culture by Pd nanosheets captured within agarose and alginate hydrogels, providing a biodegradable catalytic framework to achieve controlled release of one of the most important chemotherapy drugs in medical practice. The compatibility of bioorthogonal catalysis and physical hydrogels opens up new opportunities to administer and modulate the mobility of transition metal catalysts in living environs

    2D self-assembly of o-OPE foldamers for chiroptical barcoding

    Get PDF
    We report on the preparation and characterization of two dimensional (2D) films of (S,S,P)-1 and (R,R,M)-1ortho-oligophenylene ethylene (o-OPE) enantiomers presenting high values of circularly polarized luminescence (CPL). The amphiphilic character of these two molecules allows a precise 2D self-assembly at the air/water interface and an efficient transfer onto a glass solid support. The morphological and chiroptical characterization of the solid supports after the transfer of 1, 8, 16 and 32 Langmuir films of (S,S,P)-1 and (R,R,M)-1 has been carried out. The strong chiroptical values of these monomers allow reliable ECD measurements to be obtained after a single transfer, with ECD values increasing as the number of transferred films increases. The semi-liquid behavior of the monomers on the solid substrate allows CPL measurements free of photoselection artifacts that show values similar to those obtained in solution and independent of monomer concentration. All these properties have allowed us to develop the first simple organic molecule (SOM)-based chiroptical barcoding presenting positive and negative regions as a proof of concept
    corecore