9,530 research outputs found
Supervised Learning in Time-dependent Environments with Performance Guarantees
In practical scenarios, it is common to learn from a sequence of related problems (tasks).
Such tasks are usually time-dependent in the sense that consecutive tasks are often
significantly more similar. Time-dependency is common in multiple applications such
as load forecasting, spam main filtering, and face emotion recognition. For instance, in
the problem of load forecasting, the consumption patterns in consecutive time periods
are significantly more similar since human habits and weather factors change gradually
over time. Learning from a sequence tasks holds promise to enable accurate performance
even with few samples per task by leveraging information from different tasks. However,
harnessing the benefits of learning from a sequence of tasks is challenging since tasks
are characterized by different underlying distributions.
Most existing techniques are designed for situations where the tasksâ similarities
do not depend on their order in the sequence. Existing techniques designed for timedependent
tasks adapt to changes between consecutive tasks accounting for a scalar
rate of change by using a carefully chosen parameter such as a learning rate or a weight
factor. However, the tasksâ changes are commonly multidimensional, i.e., the timedependency
often varies across different statistical characteristics describing the tasks.
For instance, in the problem of load forecasting, the statistical characteristics related
to weather factors often change differently from those related to generation.
In this dissertation, we establish methodologies for supervised learning from a sequence
of time-dependent tasks that effectively exploit information from all tasks,
provide multidimensional adaptation to tasksâ changes, and provide computable tight
performance guarantees. We develop methods for supervised learning settings where
tasks arrive over time including techniques for supervised classification under concept
drift (SCD) and techniques for continual learning (CL). In addition, we present techniques
for load forecasting that can adapt to time changes in consumption patterns
and assess intrinsic uncertainties in load demand. The numerical results show that the
proposed methodologies can significantly improve the performance of existing methods
using multiple benchmark datasets. This dissertation makes theoretical contributions
leading to efficient algorithms for multiple machine learning scenarios that provide computable
performance guarantees and superior performance than state-of-the-art techniques
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
- âŠ