25 research outputs found
Structure-activity relationships of LDH catalysts for the glucose-to-fructose isomerisation in ethanol
Glucose-to-fructose isomerization is the key process in the reaction sequence that can lead to the total conversion of biomass into valuable fine chemicals. However, it is challenging to find an..
Binding of Ca2+ Ions to Alkylbenzene Sulfonates: Micelle Formation, Second Critical Concentration and Precipitation
Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in various fields, including industry, household, and agriculture. The efficiency of their use in aqueous environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as they can decrease the concentration of the surfactant due to precipitation. To understand cation–sulfonate interactions better, we study both NaLAS colloidal solutions in the presence of CaCl2 and precipitates forming at higher salt concentrations. Upon addition of CaCl2, we find the surface tension and critical micelle concentration of NaLAS to decrease significantly, in line with earlier findings for alkylbenzylsulfonates in the presence of divalent cations. Strikingly, an increase in the surface tension is discernible above 0.6 g L–1 NaLAS, accompanied by the decrease of apparent micelle sizes, which in turn gives rise to transparent systems. Thus, there appears to be a second critical concentration indicating another micellar equilibrium. Furthermore, the maximum salt tolerance of the surfactant is 0.1 g L–1 Ca2+, above which rapid precipitation occurs yielding sparingly soluble CaLAS2∙2H2O
M(II)Al4 Type Layered Double Hydroxides—Preparation Using Mechanochemical Route, Structural Characterization and Catalytic Application
The synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl4 type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared for the first time; using copper nitrate and perchlorate salts during the syntheses turned out to be the key to avoiding the formation of copper hydroxide sideproducts. Based on the use of the optimized syntheses parameters, the preparation of layered triple and multiple hydroxides was also attempted using Ni(II), Co(II), Zn(II) and even Mg(II) ions. These studies let us identify the relative positions of the incorporating cations in the well-known selectivity series as Ni2+ >> Cu2+ >> Zn2+ > Co2+ >> Mg2+. The solids formed were characterized by using powder X-ray diffractometry, UV–Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The catalytic potential of the samples was investigated in carbon monoxide oxidation reactions at atmospheric pressure, supported by an in situ diffuse reflectance infrared spectroscopy probe. All solids proved to be active and the combination of the nickel and cobalt incorporation (which resulted in a NiCoAl8 layered triple hydroxide) brought outstanding benefits regarding low-temperature oxidation and increased carbon monoxide conversion values