29,051 research outputs found
The design and development of a solar tracking unit
The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument
Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver
Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed
Opening angles, Lorentz factors and confinement of X-ray binary jets
We present a collation of the available data on the opening angles of jets in
X-ray binaries, which in most cases are small (less than 10 degrees). Under the
assumption of no confinement, we calculate the Lorentz factors required to
produce such small opening angles via the transverse relativistic Doppler
effect. The derived Lorentz factors, which are in most cases lower limits, are
found to be large, with a mean greater than 10, comparable to those estimated
for AGN and much higher than the commonly-assumed values for X-ray binaries of
2 to 5. Jet power constraints do not in most cases rule out such high Lorentz
factors. The upper limits on the opening angles show no evidence for smaller
Lorentz factors in the steady jets of Cygnus X-1 and GRS 1915+105. In those
sources in which deceleration has been observed (notably XTE J1550-564 and
Cygnus X-3), some confinement of the jets must be occurring, and we briefly
discuss possible confinement mechanisms. It is however possible that all the
jets could be confined, in which case the requirement for high bulk Lorentz
factors can be relaxed.Comment: 11 pages, 4 figures (2 colour), accepted for publication in MNRA
An Analysis of the Quasicontinuum Method
The aim of this paper is to present a streamlined and fully three-dimensional
version of the quasicontinuum (QC) theory of Tadmor et al. and to analyze its
accuracy and convergence characteristics. Specifically, we assess the effect of
the summation rules on accuracy; we determine the rate of convergence of the
method in the presence of strong singularities, such as point loads; and we
assess the effect of the refinement tolerance, which controls the rate at which
new nodes are inserted in the model, on the development of dislocation
microstructures.Comment: 30 pages, 16 figures. To appear in Jornal of the Mechanics and
Physics of Solid
A decelerating jet observed by the EVN and VLBA in the X-ray transient XTE J1752-223
The recently discovered Galactic X-ray transient XTE J1752-223 entered its
first known outburst in 2010, emitting from the X-ray to the radio regimes. Its
general X-ray properties were consistent with those of a black hole candidate
in various spectral states, when ejection of jet components is expected. To
verify this, we carried out very long baseline interferometry (VLBI)
observations. The measurements were carried out with the European VLBI Network
(EVN) and the Very Long Baseline Array (VLBA) at four epochs in 2010 February.
The images at the first three epochs show a moving jet component that is
significantly decelerated by the last epoch, when a new jet component appears
that is likely to be associated with the receding jet side. The overall picture
is consistent with an initially mildly relativistic jet, interacting with the
interstellar medium or with swept-up material along the jet. The brightening of
the receding ejecta at the final epoch can be well explained by initial Doppler
deboosting of the emission in the decelerating jet.Comment: Accepted for publication in MNRAS Letters. 5 pages, 2 figure
GRO J1744-28, search for the counterpart: infrared photometry and spectroscopy
Using VLT/ISAAC, we detected 2 candidate counterparts to the bursting pulsar
GRO J1744-28, one bright and one faint, within the X-ray error circles of
XMM-Newton and Chandra. In determining the spectral types of the counterparts
we applied 3 different extinction corrections; one for an all-sky value, one
for a Galactic Bulge value and one for a local value. We find the local value,
with an extinction law of alpha = 3.23 +- 0.01 is the only correction that
results in colours and magnitudes for both bright and faint counterparts
consistent with a small range of spectral types, and for the bright
counterpart, consistent with the spectroscopic identification. Photometry of
the faint candidate indicates it is a K7/M0 V star at a distance of 3.75 +- 1
kpc. This star would require a very low inclination angle (i < 9deg) to satisfy
the mass function constraints; however it cannot be excluded as the counterpart
without follow-up spectroscopy to detect emission signatures of accretion.
Photometry and spectroscopy of the bright candidate indicate it is most likely
a G/K III star. The spectrum does not show Br-gamma emission, a known indicator
of accretion. The bright star's magnitudes are in agreement with the
constraints placed on a probable counterpart by the calculations of Rappaport &
Joss (1997) for an evolved star that has had its envelope stripped. The mass
function indicates the counterpart should have M < 0.3 Msol for an inclination
of i >= 15deg; a stripped giant, or a main sequence M3+ V star are consistent
with this mass-function constraint. In both cases mass-transfer, if present,
will be by wind-accretion as the counterpart will not fill its Roche lobe given
the observed orbital period. The derived magnetic field of 2.4 x 10^{11} G will
inhibit accretion by the propeller effect, hence its quiescent state.Comment: 12 pages, 6 figures, 4 table, MNRAS accepted Changes to the content
and an increased analysis of the Galactic centre extinctio
The visual standards for the selection and retention of astronauts
Literature search with abstracts on visual performance standards for selection and retention of astronaut
- …