7,228 research outputs found

    Refraction of shear zones in granular materials

    Full text link
    We study strain localization in slow shear flow focusing on layered granular materials. A heretofore unknown effect is presented here. We show that shear zones are refracted at material interfaces in analogy with refraction of light beams in optics. This phenomenon can be obtained as a consequence of a recent variational model of shear zones. The predictions of the model are tested and confirmed by 3D discrete element simulations. We found that shear zones follow Snell's law of light refraction.Comment: 4 pages, 3 figures, minor changes, jounal ref. adde

    Noise Threshold for Universality of Two-Input Gates

    Full text link

    Jet triggered Type Ia supernovae in radio-galaxies?

    Full text link
    We report the serendipitous discovery of a supernova (SN) in the nearby radio-galaxy 3C 78. Observations obtained with the STIS spectrograph on board the Hubble Space Telescope show, at a distance of 0.54 arcsec (300 pc) from the galaxy nucleus, a second bright source, not present in previous images. As this source was fortuitously covered by the spectrograph slit its spectrum was obtained and it is characteristic of a Type Ia SN. This SN is closely aligned with the radio-jet of 3C 78. Analysis of historical records shows that such a close association between jet and supernova occurred in 6 of the 14 reported SNe in radio-galaxies. The probability that this results from a random distribution of SN in the host galaxy is less than 0.05%. We then argue that jets might trigger supernova explosions.Comment: 9 pages, 3 figures, 1 table, to appear in ApJL, 20 Jul 200

    On the magnetic equation of state in (2+1)-flavor QCD

    Full text link
    A first study of critical behavior in the vicinity of the chiral phase transition of (2+1)-flavor QCD is presented. We analyze the quark mass and volume dependence of the chiral condensate and chiral susceptibilities in QCD with two degenerate light quark masses and a strange quark. The strange quark mass (m_s) is chosen close to its physical value; the two degenerate light quark masses (m_l) are varied in a wide range 1/80 \le m_l/m_s \le 2/5, where the smallest light quark mass value corresponds to a pseudo-scalar Goldstone mass of about 75 MeV. All calculations are performed with staggered fermions on lattices with temporal extent Nt=4. We show that numerical results are consistent with O(N) scaling in the chiral limit. We find that in the region of physical light quark mass values, m_l/m_s \simeq 1/20, the temperature and quark mass dependence of the chiral condensate is already dominated by universal properties of QCD that are encoded in the scaling function for the chiral order parameter, the magnetic equation of state. We also provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. At temperatures below, but close to the chiral phase transition at vanishing quark mass, this leads to a characteristic dependence of the light quark chiral condensate on the square root of the light quark mass.Comment: 18 pages, 18 EPS-file

    Molecular dynamics of folding of secondary structures in Go-type models of proteins

    Full text link
    We consider six different secondary structures of proteins and construct two types of Go-type off-lattice models: with the steric constraints and without. The basic aminoacid-aminoacid potential is Lennard Jones for the native contacts and a soft repulsion for the non-native contacts. The interactions are chosen to make the target secondary structure be the native state of the system. We provide a thorough equilibrium and kinetic characterization of the sequences through the molecular dynamics simulations with the Langevin noise. Models with the steric constraints are found to be better folders and to be more stable, especially in the case of the β\beta-structures. Phononic spectra for vibrations around the native states have low frequency gaps that correlate with the thermodynamic stability. Folding of the secondary structures proceeds through a well defined sequence of events. For instance, α\alpha-helices fold from the ends first. The closer to the native state, the faster establishment of the contacts. Increasing the system size deteriorates the folding characteristics. We study the folding times as a function of viscous friction and find a regime of moderate friction with the linear dependence. We also consider folding when one end of a structure is pinned which imitates instantaneous conditions when a protein is being synthesized. We find that, under such circumstances, folding of helices is faster and of the β\beta-sequences slower.Comment: REVTeX, 14 pages, EPS figures included, JCP in pres
    • …
    corecore