2,459 research outputs found
Noise and decoherence in quantum two-level systems
Motivated by recent experiments with Josephson-junction circuits we
reconsider decoherence effects in quantum two-level systems (TLS). On one hand,
the experiments demonstrate the importance of 1/f noise, on the other hand, by
operating at symmetry points one can suppress noise effects in linear order.
We, therefore, analyze noise sources with a variety of power spectra, with
linear or quadratic coupling, which are longitudinal or transverse relative to
the eigenbasis of the unperturbed Hamiltonian. To evaluate the dephasing time
for transverse 1/f noise second-order contributions have to be taken into
account. Manipulations of the quantum state of the TLS define characteristic
time scales. We discuss the consequences for relaxation and dephasing
processes.Comment: To appear in Proceedings of the Nobel Jubilee Symposium on
Condensation and Coherence in Condensed Systems (Physica Scripta
Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates
Computational drug design based on artificial intelligence is an emerging
research area. At the time of writing this paper, the world suffers from an
outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus
replication is via protease inhibition. We propose an evolutionary
multi-objective algorithm (EMOA) to design potential protease inhibitors for
SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA
maximizes the binding of candidate ligands to the protein using the docking
tool QuickVina 2, while at the same time taking into account further objectives
like drug-likeliness or the fulfillment of filter constraints. The experimental
part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202
Photon polarisation entanglement from distant dipole sources
It is commonly believed that photon polarisation entanglement can only be
obtained via pair creation within the same source or via postselective
measurements on photons that overlapped within their coherence time inside a
linear optics setup. In contrast to this, we show here that polarisation
entanglement can also be produced by distant single photon sources in free
space and without the photons ever having to meet, if the detection of a photon
does not reveal its origin -- the which way information. In the case of two
sources, the entanglement arises under the condition of two emissions in
certain spatial directions and leaves the dipoles in a maximally entangled
state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J.
Phys.
Innovation Contests with Entry Auction
We consider procurement of an innovation from heterogeneous sellers. Innovations are random but depend on unobservable effort and private information. We compare two procurement mechanisms where potential sellers first bid in an auction for admission to an innovation contest. After the contest, an innovation is procured employing either a fixed prize or a first-price auction. We characterize Bayesian Nash equilibria such that both mechanisms are payoff-equivalent and induce the same efforts and innovations. In these equilibria, signaling in the entry auction does not occur since contestants play a simple strategy that does not depend on rivals' private information
Octet-Baryon Form Factors in the Diquark Model
We present an alternative parameterization of the quark-diquark model of
baryons which particularly takes care of the most recent proton electric
form-factor data from the E136 experiment at SLAC. In addition to
electromagnetic form factors of the nucleon, for which good agreement with data
is achieved, we discuss the weak axial vector form factor of the nucleon as
well as electromagnetic form factors of and hyperons.
Technical advance in calculating the pertinent analytic expressions within
perturbative quantum chromodynamics is gained by formulating the wave function
of the quark-diquark system in a covariant way. Finally, we also comment on the
influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures
appended at the end of the latex fil
The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models
The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with
toroidal boundary conditions and an even number of sites provide a projection
mechanism yielding the spectra of models with a central charge c<1 including
the unitary and non-unitary minimal series. Taking into account the
half-integer angular momentum sectors - which correspond to chains with an odd
number of sites - in many cases leads to new spinor operators appearing in the
projected systems. These new sectors in the XXZ chain correspond to a new type
of frustration lines in the projected minimal models. The corresponding new
boundary conditions in the Hamiltonian limit are investigated for the Ising
model and the 3-state Potts model and are shown to be related to duality
transformations which are an additional symmetry at their self-dual critical
point. By different ways of projecting systems we find models with the same
central charge sharing the same operator content and modular invariant
partition function which however differ in the distribution of operators into
sectors and hence in the physical meaning of the operators involved. Related to
the projection mechanism in the continuum there are remarkable symmetry
properties of the finite XXZ chain. The observed degeneracies in the energy and
momentum spectra are shown to be the consequence of intertwining relations
involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published
back in 1993. It has been made available here because there has been recent
interest in conformal twisted boundary conditions. The "duality-twisted"
boundary conditions discussed in this paper are particular examples of such
boundary conditions for quantum spin chains, so there might be some renewed
interest in these result
Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO3
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO3 ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr2IrO4 opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating
- …