29 research outputs found

    Muon capture for the front end of a muon collider

    Full text link
    We discuss the design of the muon capture front end for a \mu+-\mu- Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Get PDF
    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met

    Optimization of the Target Subsystem for the New g-2 Experiment

    Full text link
    A precision measurement of the muon anomalous magnetic moment, aμ=(g−2)/2a_{\mu} = (g-2)/2, was previously performed at BNL with a result of 2.2 - 2.7 standard deviations above the Standard Model (SM) theoretical calculations. The same experimental apparatus is being planned to run in the new Muon Campus at Fermilab, where the muon beam is expected to have less pion contamination and the extended dataset may provide a possible 7.5σ7.5\sigma deviation from the SM, creating a sensitive and complementary bench mark for proposed SM extensions. We report here on a preliminary study of the target subsystem where the apparatus is optimized for pions that have favorable phase space to create polarized daughter muons around the magic momentum of 3.094 GeV/c, which is needed by the downstream g 2 muon ring.Comment: 4 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian
    corecore