166 research outputs found

    Can Cosmic Structure form without Dark Matter?

    Get PDF
    One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the universe. Since we know from the cosmic microwave background that the regions that contained the most baryons when the universe was ~400,000 years old were overdense by only one part in ten thousand, perturbations had to have grown since then by a factor greater than (1+z∗)≃1180(1+z_*)\simeq 1180 where z∗z_* is the epoch of recombination. This enhanced growth does not happen in general relativity, so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular in Bekenstein's relativistic version of MOdified Newtonian Dynamics (MOND). The vector field introduced in that theory for a completely different reason plays a key role in generating the instability that produces large cosmic structures today.Comment: 5 pages, 3 figure

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR

    The GINGER Project and status of the ring-laser of LNGS

    Get PDF
    A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector; it is based on an array of ring-lasers. Comparing the Earth angular velocity measured by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be evaluated. Compared to the existing space experiments, GINGER provides a local measurement, not the averaged value and it is unnecessary to model the gravitational field. It is a proposal, but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system which provides the measure of the Length Of the DAY (LOD); G provides information on the fast component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso and some results will be presented. The first results of GINGERino will be reported, GINGERino is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers provide as well important informations for geophysics, in particular the rotational seismology, which is an emerging field of science. GINGERino is one of the three experiments of common interest between INFN and INGV
    • …
    corecore