4,587 research outputs found
The Influence of Reservoir Basin Morphometry on Phytoplankton Community Structure
The research protocol was designed to compare three reservoirs with similar physical environments but different morphometry. Three reservoirs on the western edge of the Ozark uplift were selected because of their similar substrate and climatic condition. The reservoirs primarily differed in morphometry. Two of the reservoirs were of identical size, Bob Kidd and Prairie Groves Lakes, but of different configuration, semicircular and linear, respectively. The bifurcated lake, Lincoln Lake, was of smaller size. Each lake is dimictic. Each of the lakes were nitrate-N limited while soluble reactive phosphorus-P is available and not restricting the growth of phytoplankton. Although the pattern of nutrient utilization was similar among the nutrient concentrations varied. Phytoplankton succession was alike in each reservoir but differed in quantity
Electromagnetic resonances of cylinders and aircraft model with resistive wires
The natural frequencies of the electromagnetic resonances of conducting bodies with attached wires were determined. The bodies included twp cylinders and an approximate scale model of the NASA F-106B aircraft. All were three feet in length. Time domain waveforms of B-dot and D-dot were obtained from a sampling oscilloscope, and Prony analysis was used to extract the natural frequencies. The first four natural frequencies of the cylinders (and wires) were determined, and a comparison with calculated results of other investigators shows reasonable agreement. Seven natural frequencies were determined for the F-106B model (with wires), and these were compared with results obtained by NASA in 1982 during direct lightning strikes to the aircraft. The agreement between the corresponding natural frequencies of the model and the aircraft is fairly good and is better than that obtained in the previous work using wires with less resistance. The frequencies lie between 6.5 MHz and 41 MHz, and all of the normalized damping rates are between 0.14 and 0.27
Electromagnetic resonances of cylinders and aircraft model with resistive wires
Laboratory experiments were done to determine the natural frequencies of the electromagnetic resonances of conducting bodies with attached wires. The bodies include two cylinders and an approximate scale model of the NASA F-106B aircraft. All are three feet in length. Time-domain waveforms of B-dot and D-dot were obtained from a sampling oscilloscope, and Prony analysis was used to extract the natural frequencies. This work is an extension of previous work, but smaller, more resistive wires have been used. The first four natural frequencies of the cylinders (and wires) were determined, and a comparison with calculated results of other investigators show reasonable agreement. Seven natural frequencies were determined for the F-106B model (wire wires), and these have been compared with results obtained by NASA in 1982 during direct lightning strikes to the aircraft. The agreement between the corresponding natural frequencies of the model and the aircraft is fairly good and is better than that obtained in the previous work using wires with less resistance. The frequencies lie between 6.5 MHz and 41 MHz, and all of the normalized damping rates are between 0.14 and 0.27
Data Compression System with a Minimum Time Delay Unit-Patent
Minimum time delay unit for conventional time multiplexed data compression channel
Active Education: Physical Education, Physical Activity and Academic Performance
Reviews research on the links between physical activity and concentration, cognitive functioning, and classroom behavior. Outlines the benefits of physical education and activity breaks at school to children's health and academic performance
Water Quality Sampling, Analysis and Annual Load Determinations for TSS, Nitrogen and Phosphorus at the Washington County Road 195 Bridge on the West Fork of the White River, 2004 Annual Report
A water quality sampling station was installed at the Washington County road 195 bridge on the West Fork of the White River just above the confluence of the three main forks of the Upper White River in December 2001. The Quality Assurance Project Plan (QAPP) was approved by EPA Region six on March 2002 and sampling was begun at that time. This station is coordinated with a USGS gauging station at the same location. This station was instrumented to collect samples at sufficient intervals across the hydrograph to accurately estimate the flux of total suspended solids, nitrogen and phosphorus into the upper end of Beaver Lake from the West Fork of the White River. The West Fork is listed on Arkansas\u27 1998 303d list as impaired from sediment. The Upper White was designated as the states highest priority watershed in the 1999 Unified Watershed Assessment. Accurate determination of stream nutrients and sediment is critical for future determinations of TMDLs, effectiveness of best management practices and trends in water quality
Water Quality Sampling, Analysis and Annual Load Determinations for TSS, Nitrogen and Phosphorus at the Washington County Road 76 Bridge on Ballard Creek
The Illinois River Basin has experienced water quality impairment from non-point source pollution for many years. This fact was well documented in the State of Arkansas\u27 Water Quality Assessment report, the Soil Conservation Service River Basin Study, and several University of Arkansas studies. Thirty-seven sub-watersheds have been identified by the SCS in the Arkansas portion of the Illinois River basin. In the Arkansas portion of the Basin, the Illinois River, Evansville Creek, Baron Fork, Cincinnati Creek, Muddy Fork, Moores Creek, Clear Creek, Osage Creek and Flint Creek were all classified as not supporting their designated use as primary contact recreation streams. The identified causes of the impairment were: sediment, bacteria and nutrients. In 1997, the University of Arkansas completed a project that estimated the phosphorus loading from each of the thirty-seven sub-watersheds. This project also prioritized watersheds for implementation work based on phosphorus loads, nitrogen loads and total suspended solids loads per unit area. The thirty-seven sub-watersheds were grouped into Low (16), Medium (10) and High (11) categories based on phosphorus loadings. If all the sub-watersheds above the median value for on phosphorus loading in the Illinois River basin were brought down to the current median value for phosphorus loading, this reduction would result in the agreed to 40% reduction of phosphorus at the state line. The selection of a sub-watershed for targeted intensive voluntary BMP implementation was based on the following criteria: a) the sub-watershed had to be above the current median value for phosphorus loading, b) there would be no sewage treatment plant in the sub-watershed, and c) land user interest. The Upper Ballard Creek watershed met all these requirements. The watershed covers 6700 hectares. The creek is listed in the High category with a unit area loading of 1.75 kg. per hectare per year. The median value for the thirty-seven watersheds is 0.73 kg. per hectare per year
Breakdown characteristics of an isolated conducting object in a uniform electric field
A laboratory experiment was conducted to determine the physical processes involved in the electrical breakdown of a particular spark gap arrangement. The gap consists of an isolated conducting ellipsoid located midway between two large flat electrodes. Gradual increase of the applied electric field, E, in the gap produces corona on the ellipsoid tips followed by flashover in a leader-arc sequence. The leader phase consists of the abrupt formation of ionized channels which partially bridge the gap and then decay prior to the arc. Measurements of dE/dt and of current were made, and photographs were taken with an image converter. Experimental parameters are listed
Diffusion and Atomic Hopping of N Atoms on Ru(0001) Studied by Scanning Tunneling Microscopy
The dynamic behavior of N atoms adsorbed on a Ru(0001) surface was studied by scanning tunneling microscopy. N atoms formed by dissociation of NO molecules show an initial sharp concentration profile at atomic steps. Its decay was followed as a function of time, providing a quasicontinuum diffusion constant; the activation energy is 0.94 eV and the prefactor is 2×10−2cm2s−1. The diffusion constant was determined also at equilibrium, from statistical jumps of individual N atoms in a uniform overlayer, and is found to be identical to the Fickian value
Adsorbate-adsorbate interactions from statistical analysis of STM images: N/Ru(0001)
Atomic nitrogen on Ru(0001) was prepared by dissociative chemisorption of N2 and studied by scanning tunneling microscopy (STM) at 300 K. Nitrogen occupies the hcp threefold hollow site and is imaged as a depression with a diameter of about 5 Å. Interactions between the adsorbed nitrogen atoms were obtained by statistical analysis of STM images, by extraction of the two-dimensional pair distribution function from the arrangement of the N atoms. Since the nearest-neighbor separations could be identified with atomic precision, the pair distribution function g and hence the potential of mean force Veff were obtained as a function of the discrete neighbor sites j up to the tenth nearest neighbor. A comparison with Monte Carlo calculations for balls with a hard-sphere potential provides information about the pair potential Vpair(j): The nearest-neighbor site is strongly repulsive, the second-neighbor site is weakly repulsive, and the third-neighbor site is weakly attractive. These findings rationalize the absence of island formation and of a well-ordered 2×2 phase for the N/Ru(0001) system: At temperatures ≥300 K the attractive interaction on the third-neighbor site is too weak, while at lower temperatures the diffusion barrier of 0.9 eV represents a kinetic obstacle. The fact that the range of the interaction is identical to the diameter of the N-atom features in the STM topographs is taken as evidence that the interaction is caused by substrate-mediated electronic forces
- …