395 research outputs found

    Transcatheter Closure of Paravalvular Defects Using a Purpose-Specific Occluder

    Get PDF
    ObjectivesThis study sought to describe a method of paravalvular leak closure using a purpose-specific occlusion device.BackgroundTranscatheter closure of paravalvular leaks has been hampered by technical challenges, the limitations of available imaging modalities, and the lack of closure devices specifically designed for this purpose.MethodsPatients with severe symptomatic paravalvular regurgitation at high risk for repeat surgery underwent transcatheter leak closure. Both left ventricular puncture and retrograde transfemoral approaches were used with fluoroscopic and 3-dimensional transesophageal guidance. A purpose-specific occluder (Vascular Plug III, AGA Medical Corp., Plymouth, Minnesota) was used.ResultsFive patients with severe prosthetic mitral and aortic paravalvular leaks underwent attempted closure. Implantation of the device was successfully accomplished in all. In 1 patient, the plug interfered with closure of a mechanical valve leaflet and was removed and replaced with an alternate device. Complications included pericardial bleeding in 2 patients with a transapical approach. There was no procedural mortality. At a median follow-up of 191 days (interquartile range [IQR] 169 to 203 days) all patients were alive. New York Heart Association functional class fell from 4 (IQR 3 to 4) to 2 (IQR 2 to 3), hemoglobin rose from 89 g/l (IQR 87 to 108 g/l) to 115 g/l (IQR 104 to 118 g/l), creatinine fell from 109 ÎĽmol/l (IQR 106 to 132 ÎĽmol/l) to 89 ÎĽmol/l (IQR 89 to 126 ÎĽmol/l). Median echocardiographic follow-up at 58 days (IQR 56 to 70 days) reported residual regurgitation to be reduced from grade 4 to grade 2 (IQR 1.5 to 2.25).ConclusionsClosure of mitral and aortic prosthetic paravalvular leaks with the Vascular Plug III using either a transapical (mitral) or a retrograde (aortic) approach appears promising

    Outcome of Patients After Transcatheter Aortic Valve Embolization

    Get PDF
    ObjectivesThis study aims to assess the mid- to long-term follow-up of patients after valve embolization at the time of transcatheter aortic valve implantation (TAVI).BackgroundTranscatheter heart valve (THV) embolization is a rare but serious complication during TAVI. Although various techniques have been developed to manage acute complications and reduce periprocedural morbidity/mortality, long-term clinical and hemodynamic consequences after these events are unknown.MethodsPatients who developed THV embolization after TAVI were prospectively assessed. Clinical and echocardiographic characteristics were recorded at baseline and after successful TAVI/surgical aortic valve replacement. The THV migration and strut fractures/degeneration were assessed by computed tomography.ResultsA total of 7 patients had THV embolization, all of which occurred immediately after valve deployment. The embolized THV was repositioned in the aortic arch proximal to the left subclavian artery (n = 2), immediately distal to the left subclavian artery (n = 2), and in the abdominal aorta (n = 3). A second THV was implanted successfully at the same sitting in 4 patients and at the time of a second procedure in 2 patients. Elective conventional aortic valve replacement was performed in 1 patient. Median follow-up was 1,085 days. One patient died during follow-up from an unrelated cause. The remaining 6 survivors were in New York Heart Association functional class I or II at final follow-up. Mid-term computed tomography follow-up (n = 4,591 to 1,548 days) showed that the leaflets of the embolized THV remain open in all phases of the cardiac cycle. There was also no strut fracture or migration of these valves.ConclusionsClinical outcomes remain good when THV embolization is managed effectively. There are no apparent hemodynamic consequences of a second valve placed in the series. These embolized valves remain in a stable position with no evidence of strut fractures at mid-term follow-up

    Caffeine for apnea of prematurity and brain development at 11 years of age

    Get PDF
    Objective Caffeine therapy for apnea of prematurity has been reported to improve brain white matter microstructure at term-equivalent age, but its long-term effects are unknown. This study aimed to investigate whether caffeine affects (1) brain structure at 11 years of age, and (2) brain development from term-equivalent age to 11 years of age, compared with placebo. Methods Preterm infants born ≤1250 g were randomly allocated to caffeine or placebo. Magnetic resonance imaging (MRI) was performed on 70 participants (33 caffeine, 37 placebo) at term-equivalent age and 117 participants (63 caffeine, 54 placebo) at 11 years of age. Global and regional brain volumes and white matter microstructure were measured at both time points. Results In general, there was little evidence for differences between treatment groups in brain volumes or white matter microstructure at age 11 years. There was, however, evidence that the caffeine group had a smaller corpus callosum than the placebo group. Volumetric brain development from term-equivalent to 11 years of age was generally similar between treatment groups. However, there was evidence that caffeine was associated with slower growth of the corpus callosum, and slower decreases in axial, radial, and mean diffusivities in the white matter, particularly at the level of the centrum semiovale, over time than placebo. Interpretation This study suggests any benefits of neonatal caffeine therapy on brain structure in preterm infants weaken over time and are not clearly detectable by MRI at age 11 years, although caffeine may have long-term effects on corpus callosum development.Claire E. Kelly, Wenn Lynn Ooi, Joseph Yuan-Mou Yang, Jian Chen, Chris Adamson, Katherine J. Lee ... et al

    White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term

    Get PDF
    Individuals born very preterm (VPT; 1 standard deviation below FT mean) had significantly reduced neurite density compared with VPT children without an impairment. Reading performance was not significantly associated with any of the white matter microstructure parameters. Additionally, the associations between white matter microstructure and mathematics and reading performance did not differ significantly between VPT and FT groups. Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density, are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is required to understand the association between reading performance and white matter microstructure in 13- year-old children.Simonne E. Collins, Megan Spencer-Smith, Ines MĂĽrner-Lavanchy, Claire E. Kellya, Philippa Pyman, Leona Pascoe, Jeanie Cheong, Lex W. Doyle, Deanne K. Thompson, Peter J. Anderso

    Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: a fixel-based analysis

    Get PDF
    Background It is well documented that infants born very preterm (VP) are at risk of brain injury and altered brain development in the neonatal period, however there is a lack of long-term, longitudinal studies on the effects of VP birth on white matter development over childhood. Most previous studies were based on voxel-averaged, non-fibre-specific diffusion magnetic resonance imaging (MRI) measures, such as fractional anisotropy. In contrast, the novel diffusion MRI analysis framework, fixel-based analysis (FBA), enables whole-brain analysis of microstructural and macrostructural properties of individual fibre populations at a sub-voxel level. We applied FBA to investigate the long-term implications of VP birth and associated perinatal risk factors on fibre development in childhood and adolescence. Methods Diffusion images were acquired for a cohort of VP (born <30 weeks' gestation) and full-term (FT, ≥37 weeks' gestation) children at two timepoints: mean (SD) 7.6 (0.2) years (n ​= ​138 VP and 32 FT children) and 13.3 (0.4) years (n ​= ​130 VP and 45 FT children). 103 VP and 21 FT children had images at both ages for longitudinal analysis. At every fixel (individual fibre population within an image voxel) across the white matter, we compared FBA metrics (fibre density (FD), cross-section (FC) and a combination of these properties (FDC)) between VP and FT groups cross-sectionally at each timepoint, and longitudinally between timepoints. We also examined associations between known perinatal risk factors and FBA metrics in the VP group. Results Compared with FT children, VP children had lower FD, FC and FDC throughout the white matter, particularly in the corpus callosum, tapetum, inferior fronto-occipital fasciculus, fornix and cingulum at ages 7 and 13 years, as well as the corticospinal tract and anterior limb of the internal capsule at age 13 years. VP children also had slower FDC development in the corpus callosum and corticospinal tract between ages 7 and 13 years compared with FT children. Within VP children, earlier gestational age at birth, lower birth weight z-score, and neonatal brain abnormalities were associated with lower FD, FC and FDC throughout the white matter at both ages. Conclusions VP birth and concomitant perinatal risk factors are associated with fibre tract-specific alterations to axonal development in childhood and adolescence.Claire E.Kelly, Deanne K.Thompson, Sila Genc, Jian Chen, Joseph YM.Yang, Chris Adamson ... et al

    Brain tissue microstructural and free-water composition 13 years after very preterm birth

    Get PDF
    There have been many studies demonstrating children born very preterm exhibit brain white matter microstruc- tural alterations, which have been related to neurodevelopmental difficulties. These prior studies have often been based on diffusion MRI modelling and analysis techniques, which commonly focussed on white matter microstructural properties in children born very preterm. However, there have been relatively fewer studies investigating the free-water content of the white matter, and also the microstructure and free-water content of the cortical grey matter, in children born very preterm. These biophysical properties of the brain change rapidly during fetal and neonatal brain development, and therefore such properties are likely also adversely affected by very preterm birth. In this study, we investigated the relationship of very preterm birth (<30 weeks’ gestation) to both white matter and cortical grey matter microstructure and free-water content in childhood using advanced diffusion MRI analyses. A total of 130 very preterm participants and 45 full-term control participants underwent diffusion MRI at age 13 years. Diffusion tissue signal fractions derived by Single-Shell 3-Tissue Constrained Spherical Deconvolution were used to investigate brain tissue microstructural and free-water composition. The tissue microstructural and free-water composition metrics were analysed using a voxel-based analysis and cortical region-of-interest analysis approach. Very preterm 13-year-olds exhibited reduced white matter microstructural density and in- creased free-water content across widespread regions of the white matter compared with controls. Additionally, very preterm 13-year-olds exhibited reduced microstructural density and increased free-water content in specific temporal, frontal, occipital and cingulate cortical regions. These brain tissue composition alterations were strongly associated with cerebral white matter abnormalities identified in the neonatal period, and concurrent adverse cognitive and motor outcomes in very preterm children. The findings demonstrate brain microstructural and free-water alterations up to thirteen years from neonatal brain abnormalities in very preterm children that relate to adverse neurodevelopmental outcomes.Claire Kelly, Thijs Dhollander, Ian H Harding, Wasim Khan, Richard Beare, Jeanie LY Cheong, Lex W Doyle, Marc Seal, Deanne K Thompson, Terrie E Inder, Peter J Anderso

    The new ALEPH Silicon Vertex Detector

    No full text
    The ALEPH collaboration, in view of the importance of effective vertex detection for the Higgs boson search at LEP 2, decided to upgrade the previous vertex detector. Main changes were an increased length (±20 cm), a higher granularity for rφ view (50 µm), a new preamplifier (MX7 rad hard chip), a polymide (upilex) fan-out on z side to carry the signals from the strips to the front-end electronics outside the fiducial region reducing consequently the passive material in the central region by a factor of two. The detector, the running experience and its performance will be described
    • …
    corecore