917 research outputs found

    Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications

    Get PDF
    Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used

    Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics

    Get PDF
    Objectives This study classified and quantified the variation in fractional flow reserve (FFR) due to fluctuations in systemic and coronary hemodynamics during intravenous adenosine infusion. Background Although FFR has become a key invasive tool to guide treatment, questions remain regarding its repeatability and stability during intravenous adenosine infusion because of systemic effects that can alter driving pressure and heart rate. Methods We reanalyzed data from the VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice) study, which enrolled consecutive patients who were infused with intravenous adenosine at 140 ÎŒg/kg/min and measured FFR twice. Raw phasic pressure tracings from the aorta (Pa) and distal coronary artery (Pd) were transformed into moving averages of Pd/Pa. Visual analysis grouped Pd/Pa curves into patterns of similar response. Quantitative analysis of the Pd/Pa curves identified the “smart minimum” FFR using a novel algorithm, which was compared with human core laboratory analysis. Results A total of 190 complete pairs came from 206 patients after exclusions. Visual analysis revealed 3 Pd/Pa patterns: “classic” (sigmoid) in 57%, “humped” (sigmoid with superimposed bumps of varying height) in 39%, and “unusual” (no pattern) in 4%. The Pd/Pa pattern repeated itself in 67% of patient pairs. Despite variability of Pd/Pa during the hyperemic period, the “smart minimum” FFR demonstrated excellent repeatability (bias −0.001, SD 0.018, paired p = 0.93, r2 = 98.2%, coefficient of variation = 2.5%). Our algorithm produced FFR values not significantly different from human core laboratory analysis (paired p = 0.43 vs. VERIFY; p = 0.34 vs. RESOLVE). Conclusions Intravenous adenosine produced 3 general patterns of Pd/Pa response, with associated variability in aortic and coronary pressure and heart rate during the hyperemic period. Nevertheless, FFR – when chosen appropriately – proved to be a highly reproducible value. Therefore, operators can confidently select the “smart minimum” FFR for patient care. Our results suggest that this selection process can be automated, yet comparable to human core laboratory analysis

    STEllar Content and Kinematics from high resolution galactic spectra via Maximum A Posteriori

    Full text link
    We introduce STECKMAP (STEllar Content and Kinematics via Maximum A Posteriori), a method to recover the kinematical properties of a galaxy simultaneously with its stellar content from integrated light spectra. It is an extension of STECMAP (astro-ph/0505209) to the general case where the velocity distribution of the underlying stars is also unknown. %and can be used as is for the analysis of large sets of data. The reconstructions of the stellar age distribution, the age-metallicity relation, and the Line-Of-Sight Velocity Distribution (LOSVD) are all non-parametric, i.e. no specific shape is assumed. The only a propri we use are positivity and the requirement that the solution is smooth enough. The smoothness parameter can be set by GCV according to the level of noise in the data in order to avoid overinterpretation. We use single stellar populations (SSP) from PEGASE-HR (R=10000, lambda lambda = 4000-6800 Angstrom, Le Borgne et al. 2004) to test the method through realistic simulations. Non-Gaussianities in LOSVDs are reliably recovered with SNR as low as 20 per 0.2 Angstrom pixel. It turns out that the recovery of the stellar content is not degraded by the simultaneous recovery of the kinematic distribution, so that the resolution in age and error estimates given in Ocvirk et al. 2005 remain appropriate when used with STECKMAP. We also explore the case of age-dependent kinematics (i.e. when each stellar component has its own LOSVD). We separate the bulge and disk components of an idealized simplified spiral galaxy in integrated light from high quality pseudo data (SNR=100 per pixel, R=10000), and constrain the kinematics (mean projected velocity, projected velocity dispersion) and age of both components.Comment: 12 pages, 6 figures, accepted for publication in MNRA

    Quantification of valvular regurgitation by cardiac blood pool scintigraphy: correlation with catheterization

    Get PDF
    The diagnosis of valvular regurgitation (R) is usually based on clinical signs. Quantification conventionally requires catheterization (C). We have quantified R with cardiac blood pool scintigraphy (CBPS) and compared the results with those obtained by C. Regurgitant fraction (RF) determined by C was calculated with the technique of Dodge. Forward output was measured by thermodilution or cardiogreen dilution. The RF at CBPS was obtained by the stroke index ratio (SIR) minus 1.2 divided by SIR, where SIR is the ratio of the stroke counts of left venticle over those of the right ventricle. Stroke counts are calculated directly from the time-activity curves. Each time-activity curve was obtained by drawing one region of interest around each diastolic image. The correction factor (1.2) was calculated from a large normal population. 22 patients had aortic R, 7 mitral R, 12 both, 8 patients had no evidence of regurgitation. RF of the patients with R varied from 27 to 71% (x = 42%) at C and from 26 to 74% (Y = 41%) at CBPS. Linear regression shows a good correlation coefficient (r = 0.82). The regression equation is y = 0.93x + 1.8. No correlation was found between RF (CBPS or C) and the severity of R assessed visually from angiography. In conclusion: CBPS, a non-invasive method, allows easy and repeatable determination of RF and correlates well with data obtained at catheterizatio

    Ability of FFR-CT to detect the absence of hemodynamically significant lesions in patients with high-risk NSTE-ACS admitted in the emergency department with chest pain, study design and rationale.

    Get PDF
    In the era of High-sensitive troponin (hs-Tn), up to 50% of patients with a mild increase of hs-Tn will finally have a normal invasive coronary angiogram. Fractional Flow Reserve (FFR) derived from coronary computed tomographic angiography (FFR-CT) has never been used as a non-invasive tool for the diagnosis of coronary artery disease in patients with high-risk acute coronary syndrome without ST segment elevation (NSTE-ACS). The study aims to determine the role of coronary CT angiography and FFR-CT in the setting of high-risk NSTE-ACS. We will conduct a prospective trial, enrolling 250 patients admitted with high-risk NSTE-ACS who will rapidly undergo a coronary CT angiography and then a coronary angiography with FFR measurements. Results of coronary CT, FFR-CT and coronary angiography (± FFR) will be compared. In conclusion, non-invasive identification of patients with high-risk NSTE-ACS who could avoid coronary angiography would reduce procedure related risks and medical costs

    Mismatch between morphological and functional assessment of the length of coronary artery disease

    Get PDF
    Background: Morphological evaluation of coronary lesion length is a paramount step during invasive assessment of coronary artery disease. Likewise, the extent of epicardial pressure losses can be measured using longitudinal vessel interrogation with fractional flow reserve (FFR) pullbacks. We aimed to quantify the mismatch in lesion length between morphological (based on quantitative coronary angiography, QCA, and optical coherence tomography, OCT) and functional evaluations. Methods: This is a prospective and multicenter study of patients evaluated by QCA, OCT and motorized fractional flow reserve pullbacks (mFFR). The difference in lesion length between the functional and anatomical evaluations was referred to as FAM. Results: 117 patients (131 vessels) were included. Median lesion length derived from angiography was 16.05 mm [11.40–22.05], from OCT was 28.00 mm [16.63–38.00] and from mFFR 67.12 mm [25.38–91.37]. There was no correlation between QCA and mFFR lesion length (r = 0.124, 95% CI -0.168-0.396, p = 0.390). OCT lesion length did correlate with mFFR (r = 0.469, 95% CI 0.156–0.696, p = 0.004). FAM was strongly associated with the improvement in vessel conductance with percutaneous coronary intervention (PCI), higher mismatch was associated with lower post-PCI FFR. Conclusions: Lesion length assessment differs between morphological and functional evaluations. The morphological-functional mismatch in lesion length is frequent, and influences the results of PCI in terms of post-PCI FFR. Integration of the extent of pressure losses provides clinically relevant information that may be useful for clinical decision-making concerning revascularization strategy
    • 

    corecore