6,204 research outputs found

    The band gap problem: the accuracy of the Wien2k code confronted

    Full text link
    This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified Becke-Jonhson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than 10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less. An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account, the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not yet a closed issue.Comment: 8 pages, 1 figur

    El desvanecimiento de las fronteras: La integralidad del conocimiento

    Get PDF
    (Eng) This article presents the visual about the need to incorporate in our work as professionals the integrality, the combination of efforts from different specialties and disciplines, this as a response to the emergence of problems that require multidisciplinary, interdisciplinary and transdisciplinary work. It also presents the focal case that concerns us as engineers and is the relationship of engineering with the health sciences.(Spa) En este artículo se presenta una mirada sobre la necesidad de incorporar en nuestro accionar como profesionales el concepto de la integralidad para combinar esfuerzos desde diferentes especialidades y disciplinas. Esto como respuesta a la aparición de problemáticas que requieren de trabajos multidisciplinares, interdisciplinares y transdisciplinares. Se presenta, igualmente, el caso focal que nos atañe como ingenieros y es la relación de las ingenierías con las ciencias de la salud

    Uncovering the expression patterns of chimeric transcripts using surveys of affymetrix GeneChips.

    Get PDF
    BACKGROUND: A chimeric transcript is a single RNA sequence which results from the transcription of two adjacent genes. Recent studies estimate that at least 4% of tandem human gene pairs may form chimeric transcripts. Affymetrix GeneChip data are used to study the expression patterns of tens of thousands of genes and the probe sequences used in these microarrays can potentially map to exotic RNA sequences such as chimeras. RESULTS: We have studied human chimeras and investigated their expression patterns using large surveys of Affymetrix microarray data obtained from the Gene Expression Omnibus. We show that for six probe sets, a unique probe mapping to a transcript produced by one of the adjacent genes can be used to identify the expression patterns of readthrough transcripts. Furthermore, unique probes mapping to an intergenic exon present only in the MASK-BP3 chimera can be used directly to study the expression levels of this transcript. CONCLUSIONS: We have attempted to implement a new method for identifying tandem chimerism. In this analysis unambiguous probes are needed to measure run-off transcription and probes that map to intergenic exons are particularly valuable for identifying the expression of chimeras
    • …
    corecore