6,931 research outputs found

    Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes

    Get PDF
    We give a polynomial time attack on the McEliece public key cryptosystem based on subcodes of algebraic geometry (AG) codes. The proposed attack reposes on the distinguishability of such codes from random codes using the Schur product. Wieschebrink treated the genus zero case a few years ago but his approach cannot be extent straightforwardly to other genera. We address this problem by introducing and using a new notion, which we call the t-closure of a code

    Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells

    Get PDF
    The aim of this study was to assess the environmental impact of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs). To this aim a life cycle assessment (LCA) was carried out comparing three scenarios: 1) a conventional CW system (without MFC implementation); 2) a CW system coupled with a gravel-based anode MFC, and 3) a CW system coupled with a graphite-based anode MFC. All systems served a population equivalent of 1500 p.e. They were designed to meet the same effluent quality. Since MFCs implemented in CWs improve treatment efficiency, the CWs coupled with MFCs had lower specific area requirement compared to the conventional CW system. The functional unit was 1 m3 of wastewater. The LCA was performed with the software SimaPro® 8, using the CML-IA baseline method. The three scenarios considered showed similar environmental performance in all the categories considered, with the exception of Abiotic Depletion Potential. In this impact category, the potential environmental impact of the CW system coupled with a gravel-based anode MFC was around 2 times higher than that generated by the conventional CW system and the CW system coupled with a graphite-based anode MFC. It was attributed to the large amount of less environmentally friendly materials (e.g. metals, graphite) for MFCs implementation, especially in the case of gravel-based anode MFCs. Therefore, the CW system coupled with graphite-based anode MFC appeared as the most environmentally friendly solution which can replace conventional CWs reducing system footprint by up to 20%. An economic assessment showed that this system was around 1.5 times more expensive than the conventional CW system.Peer ReviewedPostprint (author's final draft

    Instantaneous model of a MESFET for use in linear and nonlinear circuit simulations

    Get PDF
    A formal approach for nonlinear modeling of FETs is presented. The intrinsic transistor is described by current and charge generators, that are instantaneously dependent on the two internal voltages. The extrinsic parasitic elements are also included. This instantaneous model is obtained from the small signal equivalent circuit computed at a number of bias points, by integration of the bias dependent elements. A program for using this model in nonlinear circuit analysis has been developed. The process has been carried out for two transistors, one being of low noise, and the other a power MESFET. Good agreement has been observed when comparing the nonlinear analysis with measured data. A solid-state power amplifier at 28 GHz has been designed using the power transistor, delivering 21 dBm at 1 dB compression point.Peer ReviewedPostprint (published version

    Ocean salinity observations with SMOS mission

    Get PDF
    The purpose of this paper is to present the capabilities of SMOS (Soil Moisture and Ocean Salinity mission) for the global mapping of ocean salinity from space. SMOS has been selected by the European Space Agency as the second Earth Explorer Opportunity with a launch date in June 2005. The sensor embarked on SMOS is MIRAS, a Microwave Imaging Radiometer with Aperture Synthesis. MIRAS works at L-band, in the two-polarisations, and has full polarimetric capability. The measurement of sea surface salinity (SSS) is one of the challenges of SMOS. This paper presents first the scientific requirements for a number of oceanographic applications. The scientific requirements are then translated into instrument accuracy, sensitivity, stability and spatial resolution. Major sources of error in the retrieval of ocean salinity will be addressed through an experimental campaign which is described.Peer ReviewedPostprint (published version

    End-to-end thiocyanato-bridged helical chain polymer and dichlorido-bridged copper(II) complexes with a hydrazone ligand: synthesis, characterisation by electron paramagnetic resonance and variable- temperature magnetic studies, and inhibitory effects on human colorectal carcinoma cells

    Get PDF
    The reactions of the tridentate hydrazone ligand, N’-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional helical coordination chain of [CuL(NCS)]n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2) (where L=CH3C(O)=N − N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L- coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN- anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu···Cu distance of 3.402 (1). The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV– vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205 and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis

    Cryptanalysis of McEliece Cryptosystem Based on Algebraic Geometry Codes and their subcodes

    Full text link
    We give polynomial time attacks on the McEliece public key cryptosystem based either on algebraic geometry (AG) codes or on small codimensional subcodes of AG codes. These attacks consist in the blind reconstruction either of an Error Correcting Pair (ECP), or an Error Correcting Array (ECA) from the single data of an arbitrary generator matrix of a code. An ECP provides a decoding algorithm that corrects up to d1g2\frac{d^*-1-g}{2} errors, where dd^* denotes the designed distance and gg denotes the genus of the corresponding curve, while with an ECA the decoding algorithm corrects up to d12\frac{d^*-1}{2} errors. Roughly speaking, for a public code of length nn over Fq\mathbb F_q, these attacks run in O(n4log(n))O(n^4\log (n)) operations in Fq\mathbb F_q for the reconstruction of an ECP and O(n5)O(n^5) operations for the reconstruction of an ECA. A probabilistic shortcut allows to reduce the complexities respectively to O(n3+εlog(n))O(n^{3+\varepsilon} \log (n)) and O(n4+ε)O(n^{4+\varepsilon}). Compared to the previous known attack due to Faure and Minder, our attack is efficient on codes from curves of arbitrary genus. Furthermore, we investigate how far these methods apply to subcodes of AG codes.Comment: A part of the material of this article has been published at the conferences ISIT 2014 with title "A polynomial time attack against AG code based PKC" and 4ICMCTA with title "Crypt. of PKC that use subcodes of AG codes". This long version includes detailed proofs and new results: the proceedings articles only considered the reconstruction of ECP while we discuss here the reconstruction of EC
    corecore